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ABSTRACT
We propose a Servo-Gaussian model to predict success rates in
continuous manual tracking tasks. Two tasks were conducted
to validate this model: path steering and pursuit of a 1D mov-
ing target. We hypothesized that (1) hand movements follow
the servo-mechanism model, (2) submovement endpoints form
a bivariate Gaussian distribution, thus enabling us to predict
the success rate at which a submovement endpoint falls in-
side the tolerance, and (3) the success rate for a whole trial
can be predicted if the number of submovements is known.
The cross-validation showed R2 > 0.92 and MAE < 4.9% for
steering and R2 > 0.95 and MAE < 6.5% for pursuit tasks.
These results demonstrate that our proposed model delivers
high prediction accuracy even for unknown datasets.

Author Keywords
Servo-mechanism model; steering law; manual tracking;
moving targets; success rate prediction.

CCS Concepts
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models; Pointing; Empirical studies in HCI;

INTRODUCTION
In interactive systems such as drawing software and video
games, continuous visual feedback and corresponding hand-
movement corrections are required to accomplish a task. If the
visuo-motor coordination is incorrectly controlled, undesired
outcomes arise, such as painting outside the intended area or
a player character being damaged. However, even if users
try to carefully perform a task, it is inevitable that they will
not always finish the task perfectly. Thus, understanding user
performance in terms of success rates has attracted the interest
of HCI researchers [33, 37, 61, 68].

In this paper, we propose a Servo-Gaussian model to predict
success rates in manual tracking tasks. We focus on two tasks:
path steering and pursuit of a 1D moving target. The former
is a well-studied paradigm: the steering law to predict the
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movement time MT or speed V to pass through a path [1,
17, 51]. However, as yet there is no established success rate
prediction model based on the path length and width. Manual
pursuit of a moving target is required in hand-gesturing UIs
[13], video games, and camera controls. For example, in first-
person shooter games, a player may need to continuously shoot
a machine gun at a moving tank, or in rhythm games, a player
slides a finger inside a target window that moves horizontally
at a constant pace (e.g., Arcaea). Panning a camera to capture
a moving target (walking person, flying ball, etc.) is also a
task found in daily activities using smartphones.

The key idea of our model is based on the servo-mechanism
model [14, 59]. That is, an operator views (i.e., samples) the
cursor position relative to a path/target and then determines
which position to aim at in the next submovement. S/he repeat-
edly performs this action until the task ends. A submovement
is performed in an open-loop manner, so no changes of speed
or direction are made during a sampling period. Because
submovement endpoints would distribute normally [5], the
success rate of a submovement can be predicted if the dis-
tribution parameters (µ and σ ) are known. To successfully
accomplish a task, the user must succeed in moving the cursor
inside the tolerance every submovement until the trial ends.
Hence, assuming that all successes are independent of each
other, we obtain the overall success rate for a whole trial as
the power function of a single success rate.

Adopting the servo-mechanism model to steering tasks was
done by Drury to predict the MT and V , who assumed that
a steering action consists of repetitions of ballistic submove-
ments [17]. Also, for pursuit tasks, users have to anticipate
the target position a short period later (i.e., sampling interval),
and thus, the pursuit tracking should consist of repetitions of
feedforward submovements. Readers can refer to [16, 20] for
more details on the nature of the servo-mechanism model.

Although success-rate prediction has been examined in recent
works, the focus has mainly been limited to target selection
tasks [8, 31, 33, 63]. However, interactive systems require
different operational styles depending on the application, as
mentioned above. If we can overcome this limitation by de-
veloping quantitative models, it will contribute to (e.g.) the
design of GUI components such as cascaded menus by us-
ing the path-steering success-rate model or adjustment of the
difficulty level to survive a stage by changing an enemy’s
speed.
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While the two tasks have differences, our experimental results
showed a fairly high prediction accuracy, which demonstrates
the generalizability of our model. Our contributions include:

• We derived a Servo-Gaussian model to predict success rates
in tracking tasks, which require continuous and compara-
tively longer-term tracking operations than target selection.

• We conducted two user studies to investigate the validity of
our model empirically. The results showed that our model
could predict the success rates with R2 > 0.92 and MAE <
4.9% for the steering task and R2 > 0.95 and MAE < 6.5%
for the pursuit task through shuffle-split cross-validation
using various sizes of training and test datasets.

RELATED WORK

Success or Error Rate Prediction Models for Pointing
For pointing to a static target, a well-known model to predict
the MT is Fitts’ law [21]. Typically, in a user study, partici-
pants are asked to perform “as quickly and accurately as pos-
sible” [42]. However, the balance could change towards speed
or accuracy [22, 70]. If users aim for a target more rapidly, the
error rate increases, and vice versa [70]. This speed-accuracy
tradeoff is valid in various psychological tasks [60].

In addition to MT , predictive models based on success rates
(or error rates) have been derived [43, 61]. For more dynamical
user interfaces, deriving models for capturing moving targets
has been tackled. Related works have shown that the MT
increases as a target’s speed V increases [24, 26, 34]. For error
rate prediction, naturally, as the V increases, users are more
likely to fail a task [30, 32, 33, 39, 50].

Laws of Path Steering Tasks
Rashevsky [51, 52], Drury [17], and Accot and Zhai [1] pro-
posed mathematically similar models to predict the movement
speed V to pass through a constant-width (W ) path:

V = aW. (1)

Hereafter, italic lowercase letters a–n refer to empirical con-
stants. Another form of the steering law is to predict the MT
to pass through a path whose length is A [1, 17]:

MT = b+ c(A/W ). (2)

These models hold when W is not extremely wide [27, 56].
Similar to pointing, when users try to pass through a path more
quickly, they tend to deviate from the path more [72, 73].

Although Drury’s derivation to predict V and MT was based on
a probabilistic model [17, 20], success rate prediction models
based on A and W have never been developed. If we can
derive such a model, it would be of benefit to HCI and UI
designs, similarly to the claims in related work [9, 31, 33,
61]. In addition, because the steering law is valid for many
human-machine interactions, including outside-GUI tasks, our
model will potentially contribute to task-difficulty estimation
for (e.g.) remote robot controlling [11, 28].

Servo-Mechanism Model and Sampling Interval
In pointing and steering tasks, when an operator perceives
the visual feedback on the current position of a probe (hand,

cursor, etc.) relative to the tolerance of the target or path, s/he
determines the speed and direction of the next submovement.
S/he repeatedly performs this action until the task ends. The
servo-mechanism model (or an intermittent-acting model [17,
35, 43]) assumes this loop is based on a discrete manner [16,
17]. Hence, even though a complete trial of pointing or steering
needs a closed-loop action, each submovement is considered
ballistic. This means that once the operator determines the
speed and direction of the next submovement and executes it,
s/he cannot change these parameters during the period of the
sampling interval (i.e., the sum of corrective reaction time and
the system’s latency).

The servo-mechanism model has been used in various deriva-
tions of Fitts’ [16, 43] and steering laws [17, 45]. In these
studies, the corrective reaction time from visual feedback to
execution of the next submovement is dealt with as a con-
stant, such as 0.19 to 0.26 sec [35] and shorter than 0.29 sec
[7]. Note that these reports are based on a mean result by a
pool of participants. Lin and Hsu conducted circular steering
tasks and reported that the corrective reaction times by each
participant ranged from 0.087 to 0.441 sec with the mean of
0.273 sec [41]. Thus, using the corrective reaction time as a
constant (such as 0.26 sec) is a reasonable approximation for
performance modeling. On the basis of these related studies,
in our data analyses, we first examine the model fitness by
using 0.26 sec for the corrective reaction time.

Spatial Variability in a Submovement
There is a consensus that the endpoints of ballistic movements
follow a bivariate normal distribution [5, 6, 29, 40, 53]. Ac-
cording to Howarth [29] and Beggs et al. [5, 6], the endpoint
variability that is measured as the standard deviation in ballis-
tic aiming movements on the x-axis, σx, is modeled as

σ
2
x = σ

2
0x +(σθxD)2, (3)

where σ0x is the uncontrollable hand tremor factor, σθx is
the angular accuracy relative to the movement distance, and
D is the movement distance in a submovement. The same
formulation is valid for the perpendicular variability σy:

σ
2
y = σ

2
0y +(σθyD)2. (4)

These formulations indicate that the endpoint variabilities in-
crease as the operator aims for a farther position in a submove-
ment. Because the hand tremor constants tend to be small [41,
44, 53, 69], these models are consistent with reports on the
relationship being linear [4, 23, 53]:

σx = σθxD, and σy = σθyD. (5)

FORMULATING PROBLEM AND MODEL 1: STEERING
THROUGH A CONSTANT-WIDTH LINEAR PATH

Revisiting a Derivation of the Steering Law
When Drury derived the steering law, he used the servo-
mechanism model with a constant sampling interval Tsampling
[17]. He hypothesized that (1) submovement endpoints per-
pendicular to the movement direction normally distribute with
the mean being located at the path center (Figure 1) and (2)
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a Initial state: click on target
to start trial

b Measurement begins when
right edge of target enters
measurement area, and ends
when it reaches end line

Astart line end line

cursor

W

1st submovement 2nd submovement

y1

y2

Figure 1. Hypothesized submovement distribution in a steering task.
Blue and green Xs indicate the endpoints of first and second submove-
ments, respectively, which normally distribute on the y-axis (red curves).

the variability σy is proportional to W :

σy = dW. (6)

In steering law experiments, participants try to avoid deviating
from the path; however, because they have to pass through the
path quickly, it is better to aim for a farther position in every
submovement. This explains the speed-accuracy tradeoff: if
D increases (i.e., there is faster movement), the variability
σy also increases (Equation 5), and thus the error rate will
increase (Figure 1).

By replacing σy in Equation 6 with Equation 5, we obtain

σθyD = dW , or D = eW (let e = d/σθy). (7)

Hence, as the path width increases, users aim for a farther
position in a submovement (i.e., they move faster). As the
mean speed V for this submovement is defined as the distance
divided by the time needed, we have

V = D/Tsampling. (8)

Replacing D in Equation 8 with Equation 7, we have V =
eW/Tsampling. Assuming that Tsampling is mostly constant with
one person [41], Drury derived the “V = aW” form of the
steering law (Equation 1). Then, MT is defined as the dis-
tance divided by the speed (MT = A/V = A/[aW ]), which is
equivalent to Equation 2 with no intercept.

Modeling the Success Rate of a Complete Steering Trial
The key idea of our proposed model is that users have to
sequentially succeed in positioning every submovement’s end-
point inside the path boundaries until the path end. Otherwise,
if even one of the submovements’ endpoints falls outside the
path, this trial is judged as a failure. Because the probability of
a submovement endpoint falling in the path can be predicted,
and because the steering law assumes a submovement’s suc-
cess is independent of the others [20, 45], the overall success
rate for a whole trial is computed by multiplying the single
success rate iteratively. The number of iterations is equivalent
to the number of submovements to accomplish the task, and
thus this number is computed by the MT divided by Tsampling.

First, by replacing D in Equation 4 with Equation 7, we have

σ
2
y = σ

2
0y +(σθyeW )2. (9)

Because σ0y, σθy, and e are constants, we have

σy =
√

f +gW 2. (10)

When the square of the tremor factor is small ( f = σ2
0y ≈ 0),

this becomes σy =
√

gW (proportional, Equation 6).

Formally speaking, a submovement’s endpoint on the y-axis
is a random variable Y that follows a normal distribution:

Y ∼ N(µy,σ
2
y ). (11)

The probability P of a submovement’s endpoint falling inside
the path boundaries (upper: y1, lower: y2) is derived as

P(y1 ≤ Y ≤ y2) =
1
2

[
erf

(
y2−µy

σy
√

2

)
− erf

(
y1−µy

σy
√

2

)]
, (12)

where erf(x) is the Gauss error function. If we define the
origin of the y-coordinate as the path center, µy is ≈0, as
described above. By this definition, we have (y1 = −W/2)
and (y2 =+W/2), and thus Equation 12 is simplified as

P(−W/2≤ Y ≤W/2) = erf
[
W/(2

√
2σy)

]
. (13)

The number of submovements for a complete trial Nsubmove is

Nsubmove = MT/Tsampling, (14)

where Tsampling consists of an operator’s corrective reaction
time and the system’s latency [28]. Assuming that the cor-
rective reaction time is constant (e.g., 0.26 sec), and because
the system’s latency can be directly measured (e.g., 0.05 sec),
Nsubmove can be calculated if the MT to steer through a path is
obtained. Fortunately, even for a new path condition, we can
predict the MT by the steering law. Note that Nsubmove does
not need to be an integer because a trial can finish during a
submovement. The success rate for a whole trial, P(S), is

P(S) = [P(−W/2≤ Y ≤W/2)]Nsubmove

=
[
erf
(

W/(2
√

2σy)
)](MT/Tsampling)

, (15)

where σy is computed by Equation 10. The final step to obtain
P(S) is to measure the remaining constants of f and g in
Equation 10. However, computing these values from the cursor
trajectory data is challenging, as detecting the beginning and
ending of each submovement is not a naive problem. For
pointing, users perform a quick acceleration and deceleration
in the ballistic phase and then exhibit several small speed
peaks (e.g., [49]). Hence, segmenting the cursor trajectory
into each submovement is possible [38, 46].

In contrast, for steering, the steering law assumes that the cur-
sor speed is stable for a fixed path width (Equation 1, V = aW ),
and thus accelerations/decelerations are not clearly observed
[55, 65]. Although we apply 0.26 sec as the corrective reaction
time, this is the duration of a submovement; we cannot de-
tect the spatial positions of the beginning and ending of each
submovement.

Another approach would be computing σy for the entire trajec-
tory data in a whole trial, i.e., the SD of the cursor’s y-positions
throughout one steering trial [36, 72, 73]. However, the rela-
tionship between the σy for a whole trial in those studies and
the σy for each submovement used in our model is unclear.

Therefore, we compute f and g in Equation 10 by parameter
optimization. That is, if our model appropriately expresses the
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success rates, the fitting process between Equation 15 and the
observed success rates gives “likely true” values for f and g,
which can be used to predict the success rates for new path
conditions. A similar approach has been used to indirectly
measure parameters in steering tasks, e.g., to compute the
corrective reaction time [18].

Discussion 1: Strengths and Limitations of the Model
The positive aspect of our approach is that we need only MT
and success rate data, which are commonly measured in steer-
ing experiments. This eases the efforts by researchers and UI
developers to log the probe trajectory, submovement segmen-
tation, etc. For example, in some steering tasks in the HCI
and human-robot interaction fields, it is difficult to measure
fine-grained trajectory, such as moving a robot [11, 28], which
requires additional costs to track the robot location1.

One concern is that, while the proposed model builds on re-
lated studies, it uses several approximations and simplifica-
tions. For example, we assume µy = 0 according to [17], but
this might have a bias from the path center. Also, we assume
that the corrective reaction time and the system’s latency are
almost constant, which yields Tsampling as constant. Yet, the
former varies within/between users [41], and the latter has
variability [10]. The steering law assumes that the speed is
constant for a fixed W , but this is empirically not true [55, 67].
Despite these inconsistencies, much prior literature has shown
that the steering law holds to the actual data.

We hypothesized that the success rate for a whole trial can
be expressed as the power of each submovement’s success
rate. This requires that every submovement’s success rate
be independent from each other. However, because a hand
movement has an inertia towards the path end, if a previous
submovement’s endpoint is located close to the center of the
path, the next endpoint will likely fall in the path. Thus, one
might suspect that the behaviors between consecutive sub-
movements are not independent. Still, this simplification has
also been made to validate the steering law for linear and circu-
lar paths [20, 45]. This justifies our use of the power function
to compute the success rate of a whole trial for simplicity.

In summary, while our model development is established on
existing assumptions, the reliability of the final model needs
empirical validation through a user study to determine how
well the model works with actual data.

FORMULATING PROBLEM AND MODEL 2: PURSUIT OF
A 1D MOVING TARGET
The task is to keep the cursor inside a target, which has a
width W and moves at a constant speed V rightwards, for
a movement distance A (Figure 2). As the success rate to
point to a moving target has been studied before [32, 33], our
study does not concern itself with the success rate to capture
the target. Rather, we focus on the behavior after that: how
successfully users keep the cursor inside the target for A. Thus,
when we begin to judge the success, the cursor has already
moved inside the target. For this formulation, we prepare
1Robot controlling along a path is also modeled by the steering law
based on the servo-mechanism model [28].

cursor
target

run-up area
(2-sec length)

V

start line end line measurement area
A

W

Figure 2. 1D pursuit task. Clicking on the target starts a trial. Users try
to keep the cursor inside the target during the measurement.

a run-up area before measuring the cursor position, which
allows users to adjust the cursor speed appropriately for V .

The basic idea is the same as for steering. Once a submove-
ment is executed with a predetermined speed, this cannot be
changed for a sampling interval. Then, as a submovement’s
success rate can be computed, the success rate for a whole trial
can be predicted by iteratively multiplying the single success
rate until the target reaches the end line.

Revisiting the Model on Pointing to a Moving Target
We adopt Huang et al.’s success rate model for a 1D moving
target [32]. In their study, the cursor is initially located a
certain distance from the target with width W . Once a trial
begins, the target moves at a constant speed V horizontally.
Participants must point to a target and click the mouse button.
They assumed that the endpoint on the x-axis when clicking is
a random variable X that follows a normal distribution, as

X ∼ N(µx,σ
2
x ). (16)

Then, they hypothesized that the X is the sum of the three
components that follow normal distributions:

X = Xa +Xm +Xs ∼ N(µx,σ
2
x ), (17)

where Xa ∼ N(µa,σ
2
a ), Xm ∼ N(µm,σ

2
m), and Xs ∼ N(µs,σ

2
s )

represent the precision of the pointing device, target velocity,
and target width, respectively. Xa is the absolute precision
uncertainty of a motor system that includes the input device,
which is independent from V and W . Thus, µa and σa are
constants. Xm depends on the uncertainty caused by the target
motion (i.e., V ). A simple assumption is made that µm and σm
are proportional to the V . Xs depends on the desired precision
of hitting the target and the corresponding action speed. This
variability is controlled by the speed-accuracy tradeoff, and
thus the µm and σm are assumed to be proportional to W .

Huang et al. confirmed that σx increased with V , but the
positive coefficient decreased as W increased. This interaction
suggests that Xm and Xs are dependent on each other. Thus,
they set the covariance of Xm and Xs as a term of V/W . By
summing the three normal distribution variables, we have

µx = µa +µm +µs = h+ iV + jW, (18)

σx =
√

σ2
a +σ2

m +σ2
s + cov(Xm,Xs)

=
√

k+ lV 2 +mW 2 +n(V/W ). (19)

If we define the target center as x = 0, x1 =−W/2, and x2 =
+W/2, the success rate is predicted as

P(x1 ≤ X ≤ x2) =
1
2

[
erf
(

W/2−µx

σx
√

2

)
− erf

(
−W/2−µx

σx
√

2

)]
. (20)
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This does not include the term of the initial target distance, as
it does not affect the µx and σx [32, 33].

Modeling the Success Rate of a Whole Pursuit Trial
To successfully accomplish a task, operators have to position
the cursor inside the target in every frame (i.e., system’s sam-
pling timing) until the target reaches the end line. Yet, accord-
ing to the servo-mechanism model, the cursor speed cannot be
dynamically changed during an operator’s sampling interval.
Thus, if the endpoints of two consecutive submovements are
inside the target, it is assumed that the cursor between these
two sampled positions also kept on target (Figure 3).

We assume that each submovement in a pursuit task is a
moving-target pointing task without manual clicking (or the
system automatically clicks every frame) with zero initial tar-
get distance. That is, the cursor is already inside the target
when a measurement begins, and operators aim for a target
position at the next submovement’s end timing. Operators
know the appropriate cursor speed before a measurement be-
gins, because there is sufficient time to see the target speed in
the run-up area. Such a prediction of target position can be
performed if a sufficient viewing time is provided [30, 49].

Given that the target speed is V and the sampling interval is
Tsampling, the distance needed for a submovement D is

D =V ×Tsampling. (21)

The number of submovements Nsubmove to finish a task is

Nsubmove = A/D = A/(V ×Tsampling) (22)

and the success rate for a whole pursuit trial is

P(S) = [P(−W/2≤ X ≤W/2)]Nsubmove

=

(
1
2

[
erf
(

x2−µx

σx
√

2

)
− erf

(
x1−µx

σx
√

2

)])[A/(V ·Tsampling)]
.

(23)

Because the MT for a trial is A/V , Equation 23 has the same
power index as in Equation 15.

Discussion 2: Strengths and Limitations of the Model
While we adopt the success rate model of a 1D moving target
[32] for predicting the success rate of a submovement, we
do not claim that a whole pursuit task and the repetition of
moving-target pointing are the same task. There are various
differences in these tasks. For example, clicking timing can
be determined by operators in moving-target pointing, which
will affect µx. Rather, we hypothesize that if the endpoint
uncertainty model in [32] is also valid for zero-initial-distance
moving-target capturing, the whole success rate of the target
pursuit can also be predicted by the power function of a success
rate on a submovement.

Similarly to steering tasks, our model does not need to record
the cursor trajectory. Furthermore, in contrast to the steering
model, only the success rate is needed as a dependent variable,
as the MT is fixed. This difference is distinguished as self-
paced tracking for path steering tasks or externally paced
tracking for pursuit of a moving target [17, 20]. In spite of
the differences in task requirements (e.g., self- or externally
paced, and the task constraints given for the y- or x-axes),

a Initial state: click on target
to start trial

b Measurement begins when
right edge of target enters
measurement area, and ends
when it reaches end line

target

Cursor position for
(n)-th submovement

run-up area (2-sec length)

Cursor position for
(n+1)-th submovement

Figure 3. Hypothesized submovement distribution in a pursuit task.
Blue and green Xs show the endpoints of n-th and (n+ 1)-th submove-
ments on the x-axis, respectively, which form normal distributions.

we hypothesize that the success rate for a whole trial can be
predicted for both tasks. If so, it will demonstrate a certain
generalizability of our Servo-Gaussian model.

We again used several simplifications and assumptions. For ex-
ample, (1) while Huang et al. confirmed that the initial distance
did not affect the endpoint distributions, their model validity
has not been empirically shown for zero-initial-distance and
no-clicking conditions, and (2) for simplicity in modeling, we
assumed that if two consecutive submovements’ endpoints fell
inside the target, the cursor between those two sampled points
kept inside the target. Yet, a cursor could deviate from a target
if the speed during a submovement is not perfectly constant.
The reliability of our model, again, needs an empirical test.

STUDY 1: CONSTRAINED PATH STEERING

Participants
Five students from a local university participated in this study
(all males; ages: M = 21.4, SD = 1.20 years). All were right-
handed. Three of them were daily mouse users, and the re-
maining two could also use mice well.

Apparatus
We used a laptop PC (Dell, 2.8 GHz × 4 cores, 8 GB of RAM,
Windows 10). The display was manufactured by PHILIPS
(698.1 × 392.7 mm, 2560 × 1440 pixels; 4-msec response
time) and 60 Hz refresh. The experimental system was imple-
mented with Hot Soup Processor 3.5 and used in full-screen
mode. The system reads and processes input approximately
500 times per second.

The input device was an optical mouse (Logitech, 1000 Hz,
1000 dpi) that had a 2-m cable. The cursor speed was set to the
default; the slider in Control Panel was set to the center. The
pointer acceleration (Enhance pointer precision) was disabled
to set the control-display gain to constant for avoiding uninten-
tional speeding-up/down during operations. Because the goal
of Study 1 was to validate our model, the acceleration was
unneeded and turned off. As the steering law holds both with
[2, 64] and without [54, 56] pointer acceleration, our model
validity should not be strongly affected by this setting. We
used a large mousepad (60 cm × 30 cm) and participants were
asked not to clutch the mouse during a trial.

To measure the cursor latency, we adopted Müller et al.’s
method [47]. The mouse was hit with a hard object at high
speed, and we counted the number of frames from when the
mouse stopped to when the cursor stopped on a movie recorded
by a Casio Exilim EX-ZR4000WE camera at 1000 fps. We
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repeated this action 30 times, and the average latency was 40.5
msec (SD = 13.5). This was shorter than typical mouse-to-
display latencies (55 to 82 msec [10]), so we assume it would
not have a significant negative effect on user performance.

Task
The task was to click on the left blue start area, move along
the white path, and then click on the right green end area
(see Figure 1). The crosshair cursor left a blue trace in the
start and end areas, a green trace in the path, and a red trace
in the out-of-path areas to indicate any deviation from the
path, which played a friction sound. After each trial, a large
circular button labeled “Next” appeared at a random position
and participants clicked it to reveal the next path condition.
Movement direction was always to the right.

Participants were asked to complete each task as quickly and
accurately as possible. If the cursor deviated from the path,
they were asked to return to the path immediately and then
continue the task to the end line. A click was needed in the
green end area, but as this area was sufficiently long, no precise
pointing was required [55].

Design
Study 1 was a 4 × 5 within-subjects design. The two indepen-
dent variables were path length A (400, 600, 800, and 1000
pixels) and width W (8, 11, 15, 20, and 26 pixels). The steer-
ing law difficulty (A/W ) ranged from 15.4 to 125; these values
were higher than 10 so that the W could restrict the speed [57].

In a previous study using mice with A= 480–640 and W = 15–
45 pixels, the error rates ranged from 86 to 99% with M = 93%
(no error-accepting delay condition in [64]). Thus, a model
that predicts the error rate being always ∼93% has a high
prediction accuracy. To avoid obtaining such a model, we
chose comparatively more difficult conditions.

We measured two dependent variables: MT and success rate.
MT was the time from when the cursor crossed the start line
to when it crossed the end line. A steering error was flagged
for a trial when one or more deviations were observed, and the
success rate was the percentage of the number of trials without
error(s) divided by the total number of trials for each A×W
condition.

Procedure
One session consisted of four repetitions of a random order
of 20 conditions (= 4A×5W ). Participants performed seven
sessions for data collection following ten trials that were ran-
domly selected from the 20 conditions as practice. In total, we
recorded 4A× 5W × 4repetitions× 7sessions× 5participants = 2800
data points. This task took about 45 min per participant.

Results
We removed 18 outlier data points (0.64%) for trials where
the MT was greater than 3σ from the average for each A×
W × participant condition; i.e., trials done extremely slowly
or rapidly. After that, we analyzed the MT data by repeated-
measures ANOVA. If a main effect of A or W was found, we
performed pairwise comparisons with Bonferroni correction
as the p-value adjustment method. For the F statistic, degrees
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Figure 4. Main effects of (a) A and (b) W on MT with error bars showing
95% CIs. (c) Steering law regression with a 95% CI.
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Figure 5. Main effects of A and W on success rate. Error bars: 95% CIs.

of freedom were corrected by the Greenhouse-Geisser method
if Mauchly’s sphericity assumption was violated (α = 0.05).

For success rates, Shapiro-Wilk tests (α = 0.05) showed that
the data did not normally distribute in 5 out of 20 condi-
tions. Hence, we used non-parametric ANOVAs with Aligned
Rank Transform (ART) [62] with Tukey’s p-value adjustment
method for pairwise comparisons.

Movement Time
For the MT analysis, we used error-free data to maintain con-
sistency with previous studies on the steering law [3, 67].
The mean MT was 1.756 sec. We found significant main
effects of A (F1.013,4.052 = 13.62, p < 0.05, η2

p = 0.77) and
W (F1.006,4.025 = 10.23, p < 0.05, η2

p = 0.72). The interac-
tion of A×W was significant (F1.283,5.133 = 7.075, p < 0.05,
η2

p = 0.64). The MT s increased as A increased (Figure 4a) and
as W decreased (b), but pair-wise comparisons showed no sig-
nificant differences in any pairs for both A and W (p > 0.05),
possibly because of the small number of participants. The
steering law of the MT form showed R2 = 0.98 (Figure 4c).

Success Rate
The mean success rate was 80.1%. We found a significant main
effect of W (F4,16 = 61.83, p < 0.001, η2

p = 0.94) but not for A
(F3,12 = 2.213, p = 0.1393, η2

p = 0.36). Pairwise comparisons
showed p < 0.001 for all W pairs except W = 11 and 15
pixels (p < 0.05) and W = 20 and 26 pixels (p = 0.10). The
interaction of A×W was not significant (F12,48 = 1.120, p =
0.3670, η2

p = 0.22). While the success rate differences due to A
were not statistically significant, we observed that the success
rates monotonically decreased as A increased (Figure 5a) and
as W decreased (b).

Prediction Accuracy and Discussion of Study 1
Model Fit to All Known Data
As the system’s latency was 0.0405 sec on average, and as
corrective reaction time is heuristically given as 0.26 sec, we
set the sampling interval Tsampling to 0.3 sec as an approxima-
tion. Again, the MT in our model is computed by the steering
law. For example, in a condition of A = 800 and W = 15
pixels, the actual MT was 1.770 sec, but that predicted by the
regression expression (MT = 0.03883+0.03306(A/W ), see
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(b) 𝜎𝜎y = 𝑑𝑑𝑊𝑊
R2 = 0.763
MAE = 6.58%

(a) Our model
R2 = 0.943
MAE = 3.08%

(c) 𝑃𝑃 𝑆𝑆 = 𝑏𝑏 + 𝑐𝑐 𝐴𝐴/𝑊𝑊
R2=0.771, MAE=5.47%
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Figure 6. Fitness for three candidate models. (a) Proposed model. (b)
Applying σy = dW to proposed model. (c) A model assuming the suc-
cess rate decreases for a higher steering difficulty (A/W ). Note: only (c)
does not include the predicted vs. observed success rates; this shows the
correlation between the success rates and task difficulty.

Table 1. Estimated constants for proposed model in Study 1.
b c f g

0.03883 0.03306 1.745 0.04283

Figure 4c) was 1.802 sec. Using such MT values computed
from the steering law is needed for predicting the success rates
for unknown datasets (described later).

By applying these parameters, Equation 15 computes the suc-
cess rates for each A×W condition. We used the curve_fit
function provided by the scipy.optimize library in Python
for parameter optimization so as to maximize the correlation
between the predicted and observed success rates. For N = 20
conditions, the coefficients were computed as listed in Table 1.

As shown in Figure 6a, our proposed model showed R2 =
0.943 between predicted vs. observed success rates with the
mean absolute error MAE of 3.08%. Note that the Wasserstein
distance and Hellinger distance used in related work [31, 33,
71] are not used as accuracy indicators here, as we do not
directly measure the endpoint distributions.

As no models that compute the success rates in % have been
proposed before, for comparison we discuss two other possible
model formulations. One is to use Equation 6 (σy = dW ) for
the endpoint variability in our proposed model of Equation 15.
The d in this model was computed as 0.2428, and the result
shows that the prediction accuracy was lower than our model
(see Figure 6b). This indicates that the hand tremor factor is
needed to more accurately predict the success rates. The other
model for comparison is to assume that as the steering law
difficulty (A/W ) increases, it is less likely users will succeed
in a task. However, this yielded a lower fit than our model, as
shown in Figure 6c.

Prediction Accuracy to Unknown Data
The coefficients b, c, f , and g in Table 1 were optimized
to maximize R2 by using the observed success rates. Thus,
the results (R2 = 0.943 and MAE = 3.08%) show the fits to
the known data. However, model validity, or the “prediction”
accuracy, should be judged for the future (unknown) data. For
example, by using the optimized coefficients in Table 1, how
accurately can we predict the success rate under an untested
condition such as A = 500 and W = 18 pixels?

To investigate this, we ran shuffle-split cross-validation for the
candidate models. When the ratio of (training : test) is (70% :
30%), the steps are as follows. (1) Randomly select 70% of
the data points (= 14 among 20 conditions) for training, (2)

Table 2. Average fitness by cross-validation in Study 1. The R2 and MAE
values are averaged over 100 iterations for each ratio of (training : test).

ratio [%] 80 : 20 70 : 30 60 : 40 50 : 50
R2 0.9226 0.9309 0.9341 0.9352

MAE [%] 3.676 3.667 4.832 4.689

regress the steering law MT = b+ c(A/W ) to obtain coeffi-
cients b and c, (3) optimize parameters f and g to maximize
the fit between predicted and observed success rates for those
14 data points, (4) predict success rates for the remaining (test)
six data points by using those four coefficients and the test
conditions’ A and W values, and (5) check the R2 and MAE
between the predicted and actual success rates of the six test
data points. To handle the sampling randomness when split-
ting the training and test datasets, we performed this process
over 100 iterations.

The results of the cross-validation are shown in Table 2. Be-
cause the prediction performance can change depending on
the sizes of the training and test datasets, we report four ratios.
However, we do not include the case of (training : test) = (90%
: 10%) because the number of test data points was only 2;
R2 was always 1 and thus is meaningless for cross-validation.
This result demonstrates that our model, which uses four free
parameters, does not excessively fit to the known data (i.e.,
overfitting), because the prediction accuracy did not sharply
drop even though the dataset sizes changed.

The results show that the prediction accuracy in R2 increased
as the size of the training dataset decreased. This is possibly
because the accuracy depends on whether data points that
are difficult to predict are included in the test dataset. For
example, in Figure 6a, the most biased data point from the Y =
X line shows 95.0% for the actual success rate, but our model
predicted it as 88.5%. This data point drops the prediction
score if it is included in the test dataset. However, if it is
included in the training dataset, it may negatively affect the
parameter optimization. Hence, it is difficult to analyze the
effect of this data-splitting process on the prediction accuracy.

As a comparison, the “σy = dW” model (Figure 6b) showed
mean R2 ranges from 0.71 to 0.74 and mean MAE ranges
from 7.5 to 8.4% depending on the training-test ratio over
100 iterations, the same as our proposed model. Similarly,
the steering-law difficulty model to predict the success rate
(Figure 6c) showed mean R2 ranges from 0.71 to 0.75 and
mean MAE ranges from 5.7 to 6.7%.

In summary, these results show that our model can maintain
the prediction accuracy even for unknown data with R2 > 0.92
and MAE < 4.9%. This demonstrates the robustness of our
model and overcomes our concern about overfitting causing
our model to work well only for the known data.

STUDY 2: PURSUIT OF 1D MOVING TARGET

Participants
Twelve students from a local university participated in this
study (two females and ten males; ages: M = 22.1, SD = 1.38
years). All were right-handed. All of them could use mice
well, including four daily mouse users.
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Apparatus
We used a desktop PC (3.2 GHz × 6 cores, 16 GB of RAM,
Windows 7). The display was a SHARP PN-K321 (697.9
× 392.6 mm, 3840 × 2160 pixels, 8-msec response time).
The other conditions were the same as in Study 1: we used a
Logitech mouse, a large mousepad, a constant cursor speed,
and the same programming language (Hot Soup Processor).
The system ran 500 loops per second in full-screen mode. The
same method to measure the mouse latency in Study 1 yielded
M = 62.5 msec (SD = 28.0). Thus, we set Tsampling = 0.32
sec as an approximation.

Task
When the participants clicked on the pink rectangular target,
it began moving rightwards at a constant speed V (Figure 2).
Then, they kept the 1-pixel line-shaped cursor within the target
until the end line. If the cursor deviated from the target, they
had to return the cursor into the target and continue the task.

The measurement area was defined between the start and end
lines, and its distance was fixed to 1300 pixels. When the right
edge of the target reached the start line, a click sound was
played and the target turned red to indicate the measurement
had begun. A bell was sounded when the right edge of target
reached the end line to indicate the trial ended. Before the start
line, we prepared a run-up area to view V in every trial. The
length of this area was V ×2 sec, so the time for the run-up
area was always 2 sec. To our knowledge, in mouse-pointing
experiments for a moving target, the longest time for grasping
the speed of a target is 1.5 sec [30], and thus our run-up area
provided a sufficient time to adjust the speed.

In our initial implementation, to give feedback that the cursor
is currently outside the target, the system changed the target
color to green and played a beep. However, particularly for
high V and small W conditions, the cursor repeatedly deviated
and entered the target, which resulted in rapid switching of
the target color and lots of noise. Therefore, in the actual
experiment, we did not give feedback on the cursor state.

Design and Procedure
We checked whether the cursor was kept inside the target until
A from the start line; A = 100 to 1300 pixels with 100-pixel
interval. For example, if the cursor first deviated from the
target when the target’s right edge was at x = 820, conditions
with A = 100 to 800 pixels were considered successful, but
A = 900 to 1300 pixels were errors. After running 20 trials for
each V ×W condition, if in 16 trials the cursor remained in the
target at x = 100 pixels, the success rate for A = 100 pixels
under a V×W condition was 80%. Similar data processing has
already been proposed, i.e., the use of a-posteriori independent-
variable values determined for generating data points [12, 48].

This study was a 3×3×13 within-subjects design. We used
three V s (160, 220, and 340 pixels/sec), three W s (30, 50,
and 90 pixels), and 13 As (100 to 1300 pixels with 100-pixel
interval). We referred to [32] for the values of V and W . One
session consisted of 22 repetitions of three W values appearing
in random order with a fixed V . The first two repetitions (=
six trials) were considered practice, and the remaining 20
were for data collection. The order of the three V values

was counterbalanced among the 12 participants. In total, we
recorded 3W ×20repetitions×3V ×12participants = 2160 trials.

Results

Data Processing
To detect outliers, for the x-coordinate of the cursor viewed
from the target center, we computed the mean and SD in a
trial: Mx (signed: positive is on the right side of the target
center) and SDx (unsigned), respectively. For each V ×W ×
participant condition, we detected a trial with Mx greater than
3σ from the average as an outlier; i.e., the cursor was always
extremely far from the target center. This was also done for
SDx; i.e., a trial with extreme variability (going back and forth
many times). For Mx and SDx, we respectively detected 14
and 9 trials as outliers (3 inclusive), and thus 20 trials were
removed (0.93%).

Statistical Analysis
The success rates did not normally distribute for 62% of the
conditions according to Shapiro-Wilk tests with α = 0.05. We
used non-parametric ANOVAs with Aligned Rank Transform
and Tukey’s p-value adjustment method for pairwise compar-
isons.

We found significant main effects of V (F2,22 = 10.09, p <
0.001, η2

p = 0.48), W (F2,22 = 142.0, p < 0.001, η2
p = 0.93),

and A (F11,121 = 70.01, p < 0.001, η2
p = 0.86). As shown

in Figure 7, the success rates monotonically decreased as
V increased, as W decreased, and as A increased. Pairwise
comparisons showed significant differences between V = 340
pixels and the other two values (p < 0.01), across all W values
(p < 0.001), and in 52 pairs among 78 (= 13C2) combinations
of A (at least p < 0.05). The difference in effect sizes of V
and W (η2

p = 0.48 vs. 0.93) is shown in Figure 8ab; a decrease
of W affected the success rates more drastically than V . We
also found significant interactions of V ×W (F4,44 = 3.21, p <
0.05, η2

p = 0.23), V ×A (F24,264 = 3.01, p < 0.001, η2
p = 0.21),

W×A (F24,264 = 15.88, p< 0.001, η2
p = 0.59), and V×W×A

(F48,528 = 3.61, p < 0.001, η2
p = 0.25).

In summary, V and W showed a significant interaction in
addition to their main effects (Figure 8). Thus, our model will
need to consider their covariance to predict the success rates.
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Figure 7. Main effects on success rates. Error bars show 95% CIs.
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Prediction Accuracy and Discussion of Study 2
Model Fit to All Known Data
Again, we discuss the necessity of parameters in the model
by comparing it with a possible candidate formulation. For
static-target pointing, the mean of the endpoint distribution is
expected to be close to the center (µx≈ 0 ) [42, 70]. In contrast,
for moving-target pointing, the mean is located behind the
center (µx < 0) [32] due to a delay in the sensory-motor control
system [58]. It is not yet evident whether this is also true for
the pursuit of moving targets. The cursor is already inside the
target when a measurement begins, and no clicking is needed,
so it is possible to maintain the cursor ahead of or on the
target center (µx ≥ 0). Hence, as a candidate formulation, we
compare a model that applies µx = 0 to our model.

The same as with the steering tasks, we could directly measure
µx and σx in a whole trial, but their relationship to those for
a single submovement’s endpoint distribution was unclear.
Hence, we optimize the parameters by using the observed
success rates, in the same manner as Study 1.

The results for two candidate models using N = 117 (3V ×
3W × 13A) data points are summarized in Table 3. We can
see that using non-zero µx improved the fitness, which is also
shown in Figure 9. Using the coefficients of h– j, the estimated
µx ranged from 11.7 to 30.0 pixels depending on the V and W
values. This means that in a submovement endpoint, the cursor
is located ahead of the target center, which is an opposite result
from a related work on moving target pointing [25, 32, 33].

Prediction Accuracy to Unknown Data
We ran shuffle-split cross-validation with five training-test
ratios. For a training dataset, the rounded-down number of
data points was used: e.g., when the training dataset size was
50%, floored(117/2) = 58 out of N = 117 data points were
used for training, and the remaining 59 points were for testing.

The results of the cross-validation are shown in Table 4. The
scores did not sharply drop as the size of the training dataset
decreased: R2 ranged from 0.959 to 0.967 and MAE ranged
from 6.22 to 6.46%. As a comparison, the “µx = 0” model
showed mean R2 ranges from 0.895 to 0.911 and mean MAE
ranges from 7.71 to 8.40% depending on the training-test ratio.
While this model also maintained a certain prediction accuracy,
not assuming “µx = 0” would be needed to predict the success
rate more accurately.

In summary, the results show that our model can maintain the
prediction accuracy even for unknown data with R2 > 0.95
and MAE < 6.5%. While this pursuit task is different from
moving-target pointing, iteratively applying the success rate
prediction model for each submovement’s endpoint yielded a
fairly high prediction accuracy even for unknown data.

GENERAL DISCUSSION

Model Fit and Effect of Corrective Reaction Time
Although the task requirements in Studies 1 and 2 are quite dif-
ferent in terms of the (e.g.) self/externally paced tracking and
perpendicular/collinear constraints to the movement, our con-
cept with the Servo-Gaussian model, namely, to iteratively ap-
ply the success rates for each submovement’s endpoint falling

(a) Our model
R2 = 0.972
MAE = 5.84%

(b) 𝜇𝜇x = 0
R2 = 0.955
MAE = 6.23%
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Figure 9. Observed vs. predicted success rates of candidate models.

Table 3. Estimated constants and prediction accuracy in Study 2.
Constants Our model “µx = 0” model

h −0.2266 –
i 0.03936 –
j 0.1877 –
k 9.010 −147.8
l −0.0004097 0.0007050
m 0.01421 0.04903
n 3.741 65.11

R2 0.9717 0.9554
MAE [%] 5.839 6.255

Table 4. Average fitness by cross-validation in Study 2. The R2 and MAE
values are averaged over 100 iterations for each training-test ratio.

ratio [%] 90 : 10 80 : 20 70 : 30 60 : 40 50 : 50
R2 0.9672 0.9658 0.9661 0.9633 0.9590

MAE [%] 6.275 6.223 6.273 6.347 6.466

in the path/target, worked well. The results showed a fairly
high prediction accuracy with R2 > 0.92 and MAE < 4.9%
for Study 1 and with R2 > 0.95 and MAE < 6.5% for Study 2
by cross-validation.

A remaining question is the effect of corrective reaction time
(0.26 sec) on prediction accuracy. We set the Tsampling values
with system latency to 0.3 and 0.32 sec for Studies 1 and 2,
respectively. However, as discussed in Related Work, the cor-
rective reaction time could differ within and between persons,
and thus it is better to check the effect on prediction accuracy.
According to Lin and Hsu [41], the individual corrective reac-
tion times ranged from 0.087 to 0.441 sec, so here we tested
Tsampling = 0.100 and 0.500 sec as the lower and upper values
with the system’s latency.

For Study 1, the fitness to all known data was 0.940 <
R2 < 0.945, and 3.04% < MAE < 3.16%, depending on the
Tsampling. This indicates that our model is robust against the
corrective reaction time differences. However, if we regard
the Tsampling as another parameter to seek the optimized value,
the result shows that R2 = 0.954 and MAE = 2.76% when
Tsampling = 4.292 sec. This is obviously inappropriate for a
human corrective reaction time with a system’s latency. Such a
result stems from the characteristic of parameter optimization
that all the coefficients balance each other to maximize R2.

In the same manner, for Study 2, the fitness to all known
data was 0.971 < R2 < 0.975 and 5.67% < MAE < 5.86%.
When we examined the Tsampling as an optimized parame-
ter, we obtained R2 = 0.9717 and MAE = 5.838% when
Tsampling = 0.312 sec. This Tsampling value seems to be within a
reasonable range of corrective reaction time with the system’s
latency. However, compared with the result in Table 3 (fixed
Tsampling), the differences in R2 and MAE values were quite
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slight: improvement for R2 was 0.00001 and that for MAE
was 0.0008%.

In summary, we found no benefit to include the sampling inter-
val as an optimized parameter. Because the corrective reaction
time is heuristically known and limited to a certain range,
and because the system’s latency can be directly measured,
it is unnecessary for Tsampling to be an optimized parameter.
Moreover, neglecting to optimize it also lowers the risk of
overfitting to the training dataset.

Evaluating Inter-participant Fitness
For Study 1, when we apply Tsampling = 0.3 sec for each of
the five participants, the R2 values ranged from 0.432 to
0.922 (M = 0.783), and MAE ranged from 2.05 to 7.00%
(M = 5.36). Only one participant showed R2 < 0.8. For Study
2, when we apply Tsampling = 0.32 sec for each of the 12 partic-
ipants, the R2 values ranged from 0.527 to 0.991 (M = 0.852),
and MAE ranged from 1.67 to 28.0% (M = 8.37). Eight par-
ticipants showed R2 > 0.96, while three showed R2 < 0.6.

This result indicates that our model does not work well for
all persons. A reason would be the differences in corrective
reaction time for each person. A possible approach to improve
the prediction accuracy is to measure the corrective reaction
times for each user, as in [41]. This increases the validity of the
Tsampling values and thus Nsubmove. A limitation of our analyses
is that we applied a single heuristic value for the corrective
reaction time. Still, even if we apply different Tsampling values
such as 0.1 or 0.5 sec for participants who showed low fitness
values, the R2 and MAE did not largely change.

Another reason behind the low fitness is likely due to the
number of trials; i.e., one condition was repeatedly tried 28
and 20 times in Studies 1 and 2, respectively, which changed
the error rate by 5% for one error in Study 2. As our model is
for predicting the central tendency on success rates, evaluating
the fitness for each person decreases the number of data points
and thus would show poor fits for some users. Hence, the
validity of our model was confirmed only for the averaged
data, which is common for success-rate modeling [32, 50].

Limitations and Future Work
The findings in this study are limited to our experimental
conditions, such as the ranges of task parameters and the use
of only a mouse. Also, we asked participants to balance speed
and accuracy in Study 1, which means they could spend a long
time on each task if needed. However, steering errors may
change depending on whether they try to shorten the time or
perform more carefully [73]. Our instruction covered only one
case among various speed-accuracy tradeoffs. In addition, the
numbers of participants were limited, particularly for Study
1. Yet, somewhat small pools of participants have also been
seen in other model validity testing (e.g., three users [22]
and five [19]). While we are aware that a greater number of
participants would strengthen the conclusion, still, the validity
of our proposed model was justified via cross-validation.

Each of our studies were conducted within less than an hour,
but the validity of our model for users who are sufficiently
skilled at some UIs and games is unclear. Although we found

no literature that reports the relationship between practice and
Nsubmove, it is known that a more practiced task can be per-
formed in a shorter time (cf. learning curve [15]). This means
that, for steering tasks, the MT can be reduced, which is equiv-
alent to reducing the Nsubmove in a trial. Further studies are
needed to examine the validity of our model after participants
are more practiced at a given tracking task.

The purpose of our studies was to test the validity of our
Servo-Gaussian model, so we examined the simplest tasks
for the steering law (linear path) and moving-target tracking
(1D strip). Yet, with the steering law, for example, there are
various path shapes [1, 65]. Montazer et al. showed that the
servo-mechanism model to derive the steering law is also valid
for circular paths [45], and thus we plan to evaluate the model
accuracy under non-linear conditions.

As the next step, we plan to investigate the pursuit of a 2D
target. Because we confirmed our model’s validity for both
constraints (y- and x-axes), and because Huang et al.’s end-
point variability model was validated for circular moving tar-
gets [33], our model should be effective for predicting success
rates with 2D tasks. When the shape of a 2D moving target
is square, such a task is a combination of Studies 1 and 2:
keeping the cursor inside a target moving horizontally and
not hitting the top and bottom of the target, as if there is a
horizontal path V V . This motivates us to conduct
further experiments to test the validity of our model.

Takeaway Notes
Although our model does not suggest specific parameters, such
as the optimal height for cascaded menus and the speed of a
moving enemy, it contributes to the development of efficient
GUIs and video game difficulties by enabling the success rate
prediction. Once test users perform a set of A×W (Study
1) or V ×W (Study 2), designers can predict success rates
for new conditions by using our model. This reduces the
efforts for conducting additional costly user studies and allows
developers to focus on other tasks such as visual design.

Our work introduced an important factor, namely, how often
users can successfully accomplish a task, as an indicator of
user performance in a manual tracking, in addition to existing
ones such as MT . This opens up a new research topic: success
rates can be modeled by adequately segmenting an action into
smaller submovements. This will inform future studies on
success rate prediction for more complicated actions such as
the lassoing task, which is a variation of path steering [66].

CONCLUSION
We proposed a Servo-Gaussian model to predict the success
rates in manual tracking tasks. Although the task requirements
in path steering (Study 1) and pursuit of a 1D moving target
(Study 2) are different, once the endpoint distribution in a
submovement is obtained, the success rate for a whole trial
can be predicted. The results demonstrate a certain generaliz-
ability of our model, which worked well for both collinear and
perpendicular constraints to the movement direction and for
both self and externally paced tracking. This work provides
the first evidence of the applicability of success rate models to
continuous tracking other than target selection.
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