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Abstract. Drones have begun to find extensive use in commercial, scien-
tific, recreational, agricultural, and military applications in recent times.
Drone maneuvers involve several pointing and crossing operations. In this
regard, previous studies have shown that drone pointing operations can
be modeled by the two-part model. In this study, we conduct a crossing
operation experiment to control a drone to fly through a frame with a
target width. Subsequently, we verify the applicability of Fitts’ law and
the two-part model to drone crossing operations. Fitts’ law and the two-
part model are both found to be suitably valid for crossing operations
(R2 >0.940). Upon comparing the AIC values of the two models, we find
that Fitts’ law, which has fewer parameters, is a better model for the
crossing operation. Our results indicate that the drone operation time
in crossing operations can be suitably predicted. In addition, based on
models, we can compare drones and evaluate interfaces in drone crossing
operations.

Keywords: Drone, Pointing, Crossing, User performance model, Fitts’
Law, Human-Drone Interaction

1 Introduction

Operations in graphical user interfaces (GUIs) are composed of pointing, cross-
ing, and steering operations, and these operations have been suitably modeled.
Pointing operations in GUIs involve the selection of a target (Fig. 1 left panel),
whereas crossing operations involve the movement of the cursor across a bound-
ary line (Fig. 1 right panel). The factors affecting pointing and crossing opera-
tions in GUIs are well known, and the movement time for these operations can
be predicted with high accuracy by using Fitts’ law. Meanwhile, steering oper-
ations in GUIs involve the movement of the cursor along a given path. Here,
we note that the steering law is also derived from Fitts’ law [1]. In the larger
context, it has been reported that via the modeling of these operations, a general
evaluation of interfaces and input devices is possible [2–5].

Against this backdrop, drone maneuvers also involve pointing and crossing
operations. An example of a drone pointing operation involves directing a drone
to land on a desk1 (Fig. 2 left panel). Further, the use of a drone to capture a

1 https://www.tethertools.com/product/aero-launchpad/
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Fig. 1. Pointing task (left panel) and crossing task (right panel) in graphical user
interfaces (GUIs)

self-portrait may also be considered as a pointing operation (Fig. 2 right panel).
An example of a crossing operation is a drone race2 (Fig. 3 left panel). In a
drone race, the drones must pass through a frame of a certain width. As an
example, the video entitled ”Mirai Hikou 3” shows a video shot by a drone
passing through a circle formed by human arms and plastic (Fig. 3 right). Even
in this scenario, the drone must pass through a frame of a certain width, i.e., this
is a crossing operation. These two crossing operations can be maneuvered in the
first-person view (FPV), whereas the operation of passing through a door can
be executed in the third-person view (TPV). Thus, drone maneuvering involves
many pointing and crossing operations. Here, we note that if these maneuvers
are modeled, the operation time of the drone can be predicted. In addition, we
can compare devices (such as drones and controllers) in a manner similar to GUI
comparisons, and we can, for example, make a statement that “drone A can be
controlled faster than drone B in this difficulty level.” In addition, new drone
control interfaces can be evaluated over a wide range of difficulty levels. In this
regard, previous studies have already demonstrated that pointing operations can
be modeled by the two-part model [6] (Fitts’ law was found unsuitable). Against
this backdrop, in this study, we conducted a crossing operation experiment to
control a drone to fly through a frame with a target width (Fig. 4) in an attempt
to model the crossing operation with both Fitts law and the two-part model.

Fig. 2. Examples of drone pointing operations: Landing on desk (left); Self-portrait
captured by drone (right)

2 https://youtu.be/4u7C-tx2ho0
3 https://youtu.be/2dceR6Ya79w
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Fig. 3. Examples of drone crossing operations: Drone race (left); Video production by
drone (right)

2 Related Work

2.1 Drone maneuvering

In the FPV operation of a drone, it is difficult to accurately determine the
drone height and position. In certain studies, this problem has been solved using
XR [7, 8]. Further, Erat et al. proposed a TPV maneuvering system using a
HoloLens to address the difficulty of maneuvering a drone from the FPV in
narrow paths, as might be required in disaster scenarios [9].

Meanwhile, several other studies have explored many drone maneuvering
methods and interfaces. Hall et al. investigated three maneuvering techniques
and determined which among them could capture pictures in the fastest possible
time (methods included maneuvering from the TPV, the FPV on a tablet, and
the FPV with a headset) [10]. Further, Hansen et al. determined the optimal
combination by combining eye movements and controller manipulation methods
[11]. Cho et al. discussed the difficulty of users in perceiving the actual direction
of a drone [12]. Kasahara et al. proposed a method to control a drone by means
of a touch screen [13].

2.2 Modeling and Evaluating Devices

Input devices in GUIs have been evaluated in many studies; Card et al. [3]
evaluated devices such as the mouse and joystick, while Ramcharitar et al. [14]
have compared game controllers. Here, we again note that these devices are
modeled by using Fitts’ law [3,14].

Other devices have been also modeled, such as sewing machines [15], forklifts
[16], the turning of a two-handled crank [17], and driving simulators [18]. Thus,
there are precedents for Fitts’ law or the steering law also being suitable for
operations other than those in GUIs.
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3 Experiment

In our study, we conducted a drone crossing operation experiment to control a
drone completely and fly it through a frame with a target width.

Fig. 4. Crossing experiment outline

3.1 Participants

The participants of our study included 12 undergraduate and graduate students
(7 male and 5 female students, average 23.2 years, SD = 0.80 years). Two
participants had little experience in drone control, while nine had been subjected
to previous experiments conducted by us for about two hours, and one had a
total of about ten hours of drone operation experience.

3.2 Task

The participants were required to control a drone on a path through two frames
(Fig. 4). To reduce the effect of the difference in the height of each participant,
they were made to sit on a chair at a distance of 1.0 m from the starting area
(Fig. 5, left panel). The participants were requested to perform the task as
quickly and accurately as possible. The participants were informed that the
flight position of the drone was freely adjustable until drone passage through
the start frame. In this experiment, a trial was considered successful if the drone
passed from the start frame to the goal frame without colliding with either frame;
otherwise, it was considered to be unsuccessful. Participants were notified of their
success or failure in each trial.

3.3 Apparatus

The experiment was conducted in a room (6.0 m in length, 2.5 m in width, and
2.5 m in height) containing no obstacles. The air-conditioning in the room was
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turned off. To prevent collision of the drone with the wall, a mat was positioned
behind the goal frame (Fig. 5, left panel). A drone called ”Parrot Mambo Fly
(180.0 mm in length, 180.0 mm in width, 40.0 mm in height)4” was used for
the experiment; this drone has a dedicated iPad application called ”Free Flight
Mini5” as the controller (Fig. 5 right). The speed of the drone is controlled by
the inclination of the drone; the maximum inclination can be adjusted in the
range of 5◦ to 25◦ in the application. We chose the default setting (15◦) in the
experiment.

Fig. 5. Crossing experiment environment: Photograph of actual experiment (left
panel); Drone and controller used for experiment (right panel)

3.4 Design and Procedure

The target width W was 0.3, 0.4, or 0.5 m, while the target distance D was
either 2.5 or 3.5 m. The frame used in the experiment was 1.8 m in height,
which we believed to be sufficient for controlling and maneuvering the drone.
The participants were given a time of approximately 10 min to familiarize them-
selves with the drone controls; we selected one condition from the six conditions
(2D × 3W ) and the participants performed the task as practice until they suc-
ceeded three times. Subsequently, they performed the task 10 times, from which
experimental data was obtained. Participants repeated the above procedure six
(2D × 3D) times. The order of selecting the conditions was counterbalanced by
the Latin square. In total, 720 trials (i.e., 2D× 3W × 10 sets × 12 participants)
were conducted; the time required was approximately 40–80 min per participant.

3.5 Measurement

The movement time MT (the time difference between when the center of the
drone passes through the start frame and when it passes through the goal frame)
and error rate were recorded for each trial. Parameter MT was measured from
the videos obtained during the experiments.

4 https://www.parrot.com/global/drones/parrot-mambo-fly
5 https://www.parrot.com/global/freeflight-mini
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4 Results

The acquired data were analyzed by means of repeated measures ANOVA and
the Bonferroni post hoc test. The data of ten trials were deleted by mistake, and
hence, the data of only 710 trials were used as experimental data. The number
of errors was 124 (17.4 %).

Fig. 6. Effects of distance D and width W on movement time MT (left panel) and
error rate (right panel) in crossing experiment

4.1 Effects of D and W on MT

First, we examined the main effects of W (F 2,22 = 25.06, p < 0.01) and D (F 1,11

= 13.28, p < 0.01) on MT (Fig. 6 left panel). From multiple comparisons, it was
observed that an increase in D (p < 0.01) and/or decrease in W (p > 0.10 for
W values between 0.4 m and 0.5 m; otherwise, p < 0.05) resulted in an increase
in MT (Fig. 6 left). The interaction in D ×W on MT was not observed (F 2,22

= 0.50, p > 0.10).

4.2 Effect of D and W on error rate

We next observed the main effects of W (F 2,22 = 31.95, p < 0.01) on the error
rate; however, we could not observe the main effects of D (F 1,11 = 0.55, p >0.10)
on the error rate (Fig. 6, right panel). From multiple comparisons, we found that
decreasing W (p > 0.10 for W between 0.4 m and 0.5 m; otherwise, p < 0.05)
resulted in an increase in the error rate (Fig.6 right). The interaction in D×W
on error rate was not observed(F 2,22 = 0.70, p > 0.10).

4.3 Model fitness

The movement time (MT ) of crossing operations in GUIs can be modeled by
Fitts’ law (Eq. 1); thus, Fitts’ law can be considered as a candidate model.
In the crossing experiment, for example, if the drone collides with the frame,
the drone may crash, and therefore, it is necessary to ensure clear passage of
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the drone completely within the frame. Therefore, taking into account the size
of the drone (S = 0.18m), the model in which the target width W for Fitts’
law is replaced by W − S becomes a candidate model (Eq. 2, the log term
of this equation is represented as IDcf ). Meanwhile, a previous study [6] has
demonstrated that the two-part model is also a good fit for pointing operations;
thus, the two-part model also forms a candidate model (Eq. 3, the log term of
this equation is represented as IDct).

MT = a + b log2

(
D

W
+ 1

)
(1)

where a and b denote the regression constants (hereafter, a, b, and k are used as
regression constants).

MT = a + b log2

(
D

W − S
+ 1

)
(2)

MT = a + b log2

(
D + (W − S)

(W − S)k

)
(3)

Next, we verified whether Fitts’ law (Eq. 2) suitably fits our results. The
relationship between MT and IDcf is depicted in left panel of Fig. 7. We note
from the figure that Fitts’ law affords a good fit for the crossing operation (R2 =
0.940). Next, we verified whether the two-part model (Eq. 3) could suitably fit
our results. The relationship between MT and IDct is shown in the right panel
of Fig. 7. Again, it can be observed that the two-part model affords a good fit for
the crossing operation (R2 = 0.948). In this regard, Shoemaker has demonstrated
that when the MT curves for each D and W value do not intersect, the two-part
model is more suitable than Fitts’ law [19]. However, as shown in Fig. 8, the MT
curves for each D and W value do overlap; thus, we can consider both Fitts’
law and the two-part model to be good fits. Meanwhile, from Fig. 9, we note
that the MT curves for each D and W value do not intersect in the pointing
experiment.

Fig. 7. Model suitability for Fitts’ law (left panel) and two-part model (right panel)
for crossing operation
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Fig. 8. Relationship between IDcf and MT for each value of D (left panel) and W
(right panel)

Fig. 9. Relationship between IDpf and MT for each value of D (left panel) and W
(right panel) (corresponding to Figures 11 and 12, respectively, in [6])
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Tab. 1 lists the fitness of each model for the crossing operation. In general,
a model with higher R2 and lower AIC is a better model. From the table, we
note that R2 is slightly higher for the two-part model, whereas AIC is slightly
lower for Fitts’ law. Therefore, Fitts’ law, which has fewer parameters, is a better
model for the crossing operation.

Table 1. Comparison of models considered for crossing operation

Eq. a b k R2 AIC

Fitts’ law MT = a + b log2

(
D

W−S
+ 1

)
-1.57 0.849 0.940 0.153

Two-part model MT = a + b log2

(
D+(W−S)

(W−S)k

)
-1.84 1.03 0.806 0.948 1.42

5 Discussions

5.1 Effect of target width

Participants made comments such as, “I felt that reaching the target was difficult
when the width was reduced, but I did not feel it was very difficult even when
the target distance was increased,” and “It was much more difficult to reach the
target for narrower widths.” These comments are consistent with experimental
results, wherein we observed that the error rate is affected only by the target
width W . In this experiment, the target distance D was varied as 2.5 m and 3.5
m, that is, the difference was only 1.0 m; thus, it appears that more participants
were affected by the width than the distance.

5.2 Difference in model fitness due to experimental environments

Fitts’ law was found to be a good fit for the crossing operation (R2 = 0.940);
however, it was not suitable for the pointing operation (R2 = 0.672) [6]. The
drone used in the pointing experiment was slower than the drone used in the
crossing experiment. The slower is the drone speed, the more pronounced is the
effect of target distance D. The change in the D value in the crossing experiment
was 1.0 m; however, the change in the D value in the pointing experiment was
2.0 m. The larger is the difference between the D values, the more will each D
curve in the graph show a separation, as in the results of the pointing experiment
(Fig. 9). For these reasons, for the pointing experiment, only the two-part model
afforded a good fit. Therefore, even in the crossing experiments, we speculate
that the two-part model will be a better fit over Fitts’ law when a slower drone
is used or when the gap between the D values is increased.
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5.3 Causes of high error rates

The error rate of the crossing task was 17.4%. In this regard, participants made
comments such as, “I thought that the drone had passed the frame (however, the
drone had actually not reached the frame)” and “I would like to maneuver the
drone from the side of the frame.” Based on these comments, we assumed that
participants struggled to perceive the distance between the drone and the frame.
Therefore, we considered that the error rate of this experiment is higher than
the error rate of crossing on the GUI, which does not require depth perception
(7.4 %) [1].

6 Limitation and Future work

The drone used for the experiment was prepared by experimenters, not partic-
ipants. In the experiments, the drone was unlikely to break down. Further, the
frame was composed of a soft material, and thus, the drone did not break down
even when it collided with the frame. Moreover, we note that although we asked
the participants to maneuver the drones “quickly and accurately,” when ma-
neuvering under the risk of break down and when using their own drone, users
will generally focus more on not making mistakes than reducing the movement
time. That is, users will want to maneuver the drones more “accurately” than
“quickly.” We considered that if the emphasizes would have been on “accuracy”,
the experiment would have been closer to the actual drone operations.

Further, the user standing position and viewpoint are of importance. In this
experiment, the participants stood on the takeoff side of the drone. Although
there are many such situations, there are also cases in which the drone is ma-
neuvered to return to the users or in the middle of the takeoff and the target.
In the experiment, the participants maneuvered the drone while watching the
target and the drone at the same time (i.e., TPV). However, as in the case of
drone races, there are situations in which users need to maneuver drones from
the FPV; thus, we should also verify how the FPV affects drone maneuvering.
Via examining the results for various standing positions and viewpoints, we can
demonstrate the effects of the standing position and viewpoints on the movement
time; this will form the topic of future studies.

The steering (e.g., flying a drone through a corridor6, Fig. 10) operation forms
a major component of drone operation. In GUIs, the steering law is derived from
the crossing law [1]. Thus, even for drones, because crossing operations can be
modeled, we hypothesize that even steering operations can be modeled.

7 Conclusion

In this study, we performed crossing experiments with a drone, and we studied
the effects of the target distance and target width on the drone movement time

6 https://youtu.be/MI2tgUKK3Ds
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Fig. 10. Example of drone pointing operation: flying drone through corridor

and the error rate. Our results demonstrated that the movement time was af-
fected by the target distance and target width, whereas the error rate was only
affected by the target width. Further, an analysis of our results indicated that
Fitts’ law could be applied to the crossing operation. This indicates that with
the use of suitable models, we can predict the drone operation time in cross-
ing operations. In addition, we can compare various drones and controllers and
evaluate the drone control interfaces in crossing operations. We believe that our
findings will further contribute to advancements in drone operations across a
wide range of applications.
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