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ABSTRACT
In graphical user interfaces, users can select multiple objects
simultaneously via lasso selection. This can be implemented,
for example, by having users select objects by looping around
their centers or entire areas. Based on differences in lasso-
ing criteria, we presume that the performance of the criteria
also differs. In this study, we compare three lassoing criteria
and model lassoing motions while considering these criteria.
We conducted two experiments; participants steered through
straight-line and one-loop paths by using three criteria. The
participants handled the lassoing criteria correctly and per-
formed lassoing at appropriate speeds for each path shape.
Although the drawn trajectories varied depending on the las-
soing criteria, the criteria in the performance and subjective
evaluations did not differ significantly. Additionally, from our
results, we build a baseline model to predict the movement
time by considering the lassoing criteria. We also discuss
further experiments to predict movement time under more
complex conditions.

Author Keywords
Lasso criteria; multiple selection; steering law; graphical user
interfaces.

CCS Concepts
•Human-centered computing→ Graphical user interfaces;
HCI theory, concepts and models;

INTRODUCTION
Creating a selection range is a fundamental operation in graph-
ical user interfaces (GUIs). For example, when users want to
move multiple objects at the same time, they create a selection
range containing the desired objects. In desktop interfaces,
file explorers, and photo managers, objects are arranged on a
grid. Thus, users use rectangle-based selection. In illustration
and note-taking applications, in which objects exist in various
locations, lassoing is another option. Lassoing allows users
to draw a stroke freely and thus select objects in a selection
range that they draw. In current GUIs, there are various ways
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Figure 1. Yellow objects selected using lasso with different selection crite-
ria, even though lasso stroke is same. (a) Center: Objects whose centers
are inside stroke. (b) Part: Objects fully inside or crossed by stroke. (c)
Whole: Objects whose entire areas are inside stroke.

to implement lassoing, including the following three examples
illustrated in Figure 1.

• Center denotes the circling selections [10]. In this operation,
objects whose centers are within the selection range are
selected (Figure 1a).
• Part denotes the selection of objects that are partially within

the selection range (Figure 1b), e.g., in Adobe Illustrator
CC.
• Whole denotes the selection of objects that are completely

within the selection range (Figure 1c), e.g., in Microsoft
OneNote.

For this study, we chose Whole and Part because they are
widely equipped in major applications. In addition, we chose
Center, which has been cited in many papers on target selec-
tion, one of the main topics of lassoing.

As shown in Figure 1, even if users draw the same stroke
by using different lassoing criteria, the objects to be selected
differ. The reason is that the path through which users can
actually steer depends on the lassoing criteria. For example,
when users want to select 2× 2 objects that are in the center of
4 × 4 objects, the paths that users can take for each criterion
are as shown in Figure 2. The path width is the same between
the lassoing criteria; however, the path amplitude differs; it
is short in the order of Part, Whole, and Center. Thus, as
based on the steering law [1], by using Part, whose path am-
plitude is the shortest, it is estimated that users can operate
the fastest. Existing studies [6, 8, 10, 15] on selecting multiple
objects focus on comparing one lassoing criterion and other
selection techniques. That is, as mentioned above, many lasso-
ing criteria are implemented in current applications, whereas
it is unclear which criteria should be adopted in illustration
applications for example.



Figure 2. Visualizing path through which user can actually steer with
each lasso selection method: (a) Center, (b) Part, and (c) Whole. User
can select 2 × 2 objects at center by passing through yellow-highlighted
path for each criterion.

In addition to comparing methods of selecting multiple ob-
jects, modeling lassoing motions has been conducted. For
example, Yamanaka et al. modeled steering through succes-
sive objects [17] and lassoing motion in a grid of icons [16].
However, in their studies, users could not touch any of the
objects when performing lassoing operations. As shown in
Figure 2, when using Center for example, users can steer
between the centers of the objects, and, with other lassoing
criteria, they can perform operations while touching objects.
Thus, Yamanaka et al.’s lassoing model does not consider las-
soing criteria. Additionally, if considering lassoing criteria,
increasing the interval between objects and the size of ob-
jects would increase not only the path width but also the path
amplitude. That is, in their studies, the effects of the factors
involved in lassoing operations were not investigated under
the consideration of lassoing criteria.

In this study, we conducted two experiments in which partici-
pants steered through straight-line (Figure 4b) and one-loop
paths (Figure 15a) by using the three criteria. The lassoing
operations consisted of steering through a straight-line path
and turning at a corner. In the straight-line path task, because
the path amplitude is controlled, increasing the interval be-
tween objects does not increase the path amplitude. That is,
with the task, we believe that it is possible to find the pure
effects of the factors involved in lassoing operations when
using different criteria. In the one-loop path task, users must
turn at corners in order to enclose the targets. By conducting
these two experiments, we clarified the basic performance of
the lassoing criteria. In addition, modeling steering through a
path with corners on the basis of the criteria meant succeeding
in building a baseline model. Our key contributions are as
follows:

• We compared the lassoing criteria and conducted lassoing
tasks while considering the criteria for the first time.
• Our results showed that there were no significant differences

in the movement time, error rate, and subjective evaluation
between the lassoing criteria.
• We succeeded in building a baseline model; the steering

law can sufficiently predict the movement time of lassoing
motion even in consideration of the criteria.

RELATED WORK

Selecting Multiple Objects
Methods for selecting multiple objects have been developed.
Mizobuchi et al. proposed the circling selections [10] by which

Figure 3. Example of (a) crossing operations, (b) steering operations, (c)
steering at corner.

users can select objects whose centers are in the selection
range (Figure 1a). They also found that the circling selections
is generally slower and less accurate than tapping. Dehmeshki
et al. proposed PerSel and compared this method with lassoing
and rectangle selection methods [6]. Their experiment showed
that that lassoing selection is the fastest among the methods. In
addition, other selection methods [8, 15] have been developed
and compared with lassoing selection. In summary, many
researchers focus on not comparing lassoing criteria but rather
proposing new selection methods (and comparing the methods
and the lassoing selection).

Modeling Steering and Lassoing Motions
Fitts’ law (Equation 1) is a model for predicting the movement
time (MT ) taken when selecting a target with width (W ), dis-
tance (A), and two regression constants (a and bp) [7]. The
two-goal passing task (Figure 3a), which is called crossing,
can be modeled with the same equation [1]. Let the goals’
length be W and distance be A.

MT = a+bp log2

(
A
W

+1
)

(1)

When the distance between the two goals is filled by other
goals, i.e., users pass through infinite goals without intervals,
the task becomes steering (Figure 3b). Examples of steering
operations include navigating hierarchical menus and lassoing.
The steering law [1] is derived from the integral of Equation 1
and is as follows:

MT = a+bsID, where ID =
A
W

(2)

where A denotes the path amplitude, W is the path width, and
bs is a regression constant.

When users steer through a path with a corner (Figure 3c),
the movement at the corner becomes a “stop and go” motion
[11], i.e., the speed at the corner decreases sharply. Then, the
steering law is modified by adding Fitts’ term as follows:

MT = a+bs
A
W

+bp log2

(
A/2
W

+1
)

(3)

Yamanaka et al. modeled steering through successive ob-
jects [17] and lassoing motion in a grid of icons [16]. They
found that the size of the interval between objects affects users’
movement. For example, when the interval is wide, the move-
ment becomes a series of successive crossing motions, and,
when it is narrow, the movement is a steering motion [17].
In addition, they showed that the movement time taken for
the lassoing motion can be predicted by using a model that
combines the steering law and Fitts’ law [16].



Figure 4. (a) Apparatus. (b) Experiment 1 task outline: participants had
to steer through margin between targets and non-targets.

EXPERIMENT 1: STRAIGHT-LINE PATH
We conducted a task (Figure 4b) in which participants steered
through a straight-line path because we wanted to investigate
the pure effects of the factors (e.g., the path amplitude, interval
between objects) involved in lassoing operations when using
different criteria.

Apparatus
We used an Apple MacBook Pro laptop (Intel Core i5, 2.4 GHz,
two cores, Intel Iris 1536 MB, 8 GB of RAM, macOS Sierra).
The input device and display consisted of a Wacom Cintiq
12WX DTZ-1200 W IPS liquid crystal pen tablet (12.1 in.,
261.1 × 163.2 mm, 1,280 × 800 pixels, Figure 4a). The full-
screen experimental system was developed with JavaScript
and allowed participants to interact with the screen through
touch input by using a stylus (the screen did not register finger
touching).

Participants
Twelve paid volunteers participated in this study (three women,
nine men; age: M = 23.67, SD = 1.55 years). All participants
were right-handed and operated the stylus accordingly. Each
participant received 18 US$ for the study. This experiment
was conducted on a different day from Experiment 2.

Task
The task included a blue start area, white non-targets, yellow
targets, and a green end area (Figure 4b). The center of the
path was at the center of the screen. The participants were
asked to draw a stroke to enclose all targets as quickly and
accurately as possible from the start area to the end area. The
stroke was displayed on the screen in blue until the start area
was exited, in red along the path, and again in blue after the end
area was entered [2]. After completing the stroke, the system
created a selection range by combining the participant’s red
stroke and end points at the bottom of the screen, and if all
targets were within the selection range and all non-targets
were outside it, a “success” sound was played. Otherwise,
a “failure” sound was played, and the trial was regarded as
an error. In that case, the same task was added to the end of
the remaining tasks and reattempted by the participant. After
playing either sound, the system changed the colors of the
target and non-target borders and displayed those selected and
not selected. We asked the participants to confirm whether the
trial was a success or a failure; if they did not understand why
a trial was considered an error, we instructed them to ask about
it. After confirming the trial result, the participants clicked a
button and proceeded to the next trial. Consistent with other
steering law studies [3, 17], if a participant lifted the stylus
from the screen, a failure sound was played, but the trial was

Figure 5. For each criterion, tolerance shifts, but width remains same
(equal to S+W ): (a) Center, (b) Part, and (c) Whole.

not regarded as an error, and the participant was instructed to
redo it. To fairly compare all of the lasso criteria, the object
centers were not displayed.

Design
The path amplitude A was 480 or 1000 pixels (97.73 or 203.61
mm, respectively). The object size S was 8, 12, 16, or 24
pixels (1.63, 2.44, 3.26, or 4.89 mm, respectively). The verti-
cal margin W between the targets and non-targets was 14, 22,
30, or 44 pixels (2.85, 4.48, 6.11, or 8.96 mm, respectively).
The horizontal interval I between two successive objects was
always 10 pixels (2.04 mm), and thus, we believe that the
participants always performed visually-controlled steering mo-
tions [17]. Three lasso criteria Lasso were considered: Center,
Part, and Whole (Figure 1). Figure 5 shows that there was
no difference in tolerance among the criteria. Targets and
non-targets of a particular size (S) and interval (I) were dis-
tributed along the path amplitude A. The numbers of targets
and non-targets along the path depended on A, S, and I; thus,
A was independent of S and I.

Procedure
The order of working with different criteria Lasso was bal-
anced among the 12 participants through a Latin square pattern,
and the orders of A, S, and W were randomized. One set con-
sisted of 2A×4S×4W = 32 trials. Before starting, each par-
ticipant was briefed about the experiment and lasso selection.
For each Lasso, after an introductory practice set, each partici-
pant completed five sets to produce experimental data. After
completing all of the sets, we asked each participant what they
expected with each lasso selection method. A total of 5,760
trials (i.e., 3Lasso×2A×4W ×4S×5 sets×12 participants)
were conducted, which required approximately 30 min. per
participant. We asked the participants to take a break if neces-
sary.

Measurements
The dependent variables included the movement time MT (the
time from exiting the start area to entering the end area, ex-
cluding error trials), the error rate, SDy (the standard deviation
of the trajectory’s y-coordinate, including error trials), and
My (the mean of the trajectory’s y-coordinate, including error
trials). Regarding the y-coordinate, the center of the screen
was taken as zero, with My > 0 implying that the participant
drew a stroke below the center.



Figure 6. MT vs. L, A, S, and W .

Figure 7. MT for Lasso×A×S.

Results
Among the 5,988 trials1, 238 errors occurred (3.97%). We
analyzed the data by using repeated-measures analysis of vari-
ations (ANOVA) and a Bonferroni post-hoc test. The inde-
pendent variables were Lasso, A, S, and W , and the dependent
variables were the same as those used in the measurements. In
our graphs of the results, the error bars represent the standard
error, and ***, **, and * indicate p < 0.001, p < 0.01, and
p < 0.05, respectively.

Movement Time
We observed the main effects for A (F1,11 = 104.81, p< 0.001,
η2

p = 0.91), S (F3,33 = 18.07, p < 0.001, η2
p = 0.62), and W

(F3,33 = 33.75, p < 0.001, η2
p = 0.75) but not that for Lasso

(F2,22 = 1.57, p= 0.23, η2
p = 0.12). Figure 6 shows the results

of the post-hoc test. We also observed the interactions for A×S
(F3,33 = 16.96, p < 0.001, η2

p = 0.61), A×W (F3,33 = 63.54,
p < 0.001, η2

p = 0.85), S×W (F9,99 = 15.91, p < 0.001,
η2

p = 0.59), S×A×W (F9,99 = 7.69, p < 0.001, η2
p = 0.41),

and Lasso×A× S (F6,66 = 2.36, p < 0.05, η2
p = 0.18). Re-

garding all interactions, similar relationships to the relation-
ship between the amplitude and width seen in the steering
law tasks [1, 3] were found. In particular, for Lasso×A×S,
as shown in Figure 7, there were no significant differences
between Lasso.

Error Rate
We observed the main effects for A (F1,11 = 19.77, p < 0.001,
η2

p = 0.64), S (F3,33 = 7.17, p < 0.001, η2
p = 0.39), and

W (F3,33 = 17.43, p < 0.001, η2
p = 0.61) but not that for

Lasso (F2,22 = 0.28, p = 0.76, η2
p = 0.02). Figure 8 shows

1The data of ten successful trials was lost because of an experimental
system error.

Figure 8. Error rate vs. L, A, S, and W .

Figure 9. SDy vs. L, A, S, and W .

the results of the post-hoc test. We also observed the inter-
actions for S×W (F9,99 = 2.96, p < 0.01, η2

p = 0.21) and
Lasso×A×S×W (F18,198 = 1.82, p < 0.05, η2

p = 0.14). Re-
garding S×W , increasing S and/or W decreased the error
rate. Regarding Lasso×A×S×W , there were no significant
differences between Lasso.

Standard Deviation of Y-coordinate
We observed the main effects for A (F1,11 = 150.05, p< 0.001,
η2

p = 0.93), S (F3,33 = 8.23, p < 0.001, η2
p = 0.43), and W

(F3,33 = 29.03, p < 0.001, η2
p = 0.73) but not that for Lasso

(F2,22 = 0.87, p = 0.43, η2
p = 0.07). Figure 9 shows the re-

sults of the post-hoc test. We also observed the interactions for
A×W (F3,33 = 8.74, p < 0.001, η2

p = 0.44), Lasso×A× S
(F6,66 = 2.33, p < 0.05, η2

p = 0.17), and Lasso× A×W
(F6,66 = 3.21, p < 0.01, η2

p = 0.23). Regarding A×W , in-
creasing A and/or W increased SDy. Regarding Lasso×A×S
and Lasso×A×W , there were no significant differences be-
tween Lasso except where shown in Figure 10.

Mean of Y-coordinate
We observed the main effects for Lasso (F2,22 = 118.43, p <

0.001, η2
p = 0.92) and A (F1,11 = 7.28, p < 0.05, η2

p = 0.40)

Figure 10. SDy for Lasso×A×S.



Figure 11. My vs. L, A, S, and W .

Figure 12. My for Lasso×S×W .

but not those for S (F3,33 = 0.49, p = 0.69, η2
p = 0.04) and

W (F3,33 = 0.97, p = 0.42, η2
p = 0.08). Figure 11 shows the

results of the post-hoc test. We also observed the interactions
for A×W (F3,33 = 5.26, p < 0.01, η2

p = 0.32), Lasso× S
(F6,66 = 36.67, p < 0.001, η2

p = 0.77), and Lasso× S×W
(F18,198 = 2.98, p < 0.001, η2

p = 0.21). Regarding A×W ,
increasing A decreased My. Regarding Lasso×S×W , there
were significant differences between Lasso (Figure 12). Fig-
ure 13 shows examples of the trajectories that the participants
drew, excluding error trials. For example, when Lasso = Part,
it is shown that the participants drew a stroke on the targets.

Model Fitting
To select a candidate model, we analyzed the speed of the
lassoing motion. It is known that the movement of steering
through successive objects depends on the margin between
objects [17]. For example, when users steer through objects
with wide margins, the movement becomes a series of suc-
cessive crossing motions. In comparison, when the margins
are narrow, the movement becomes a single steering motion.
Thus, we analyzed the speed of the lassoing motion to confirm
whether the participants’ movement was crossing or steering
motion. In this experiment, the margin (I) between the suc-

Table 1. Model fitting for all Lasso with adjusted R2 and AIC values (N =
32). a and b are estimated regression constants with 95% confidence
intervals (CIs) [lower, upper].

Lasso a b adj. R2

Center -54.7 40.3 0.975[-105, -4.00] [37.9, 42.7]

Part -100 43.6 0.985[-142, -57.8] [41.6, 45.5]

Whole -69.3 39.5 0.978[-117, -22.2] [37.3, 41.7]

cessive objects was always 2.04 mm, so, according to [17],
the movement was likely to be the steering motion. Figure 14
shows examples of the average speed per 40 pixels. As is
shown, the speed did not change sharply, and thus, we believe
that the participants’ movement was indeed the steering mo-
tion. On the basis of the above, we tried to model the lassoing
motion through the straight-line path by using the steering law
(Equation 2).

As shown in Figure 5, the tolerances are the same between the
criteria, i.e., S+W . Additionally, because the path amplitude
is A, the index of difficulty (ID) is defined as follows:

ID =
A

S+W
(4)

Table 1 shows the model fitness for all Lasso. For all Lasso,
the steering law shows good fitting.

Discussions
For the lassoing motion though the straight-line path, as shown
in Figures 6 and 8, the movement time and error rate were
affected by the path amplitude (A), object size (S), and object
vertical margin (W ). That is, the lassoing motion was affected
by the same factors (i.e., the path amplitude and width) as in
the steering operations, and thus, it could be modeled by the
steering law. However, there were no significant differences
between the lassoing criteria for the movement time and error
rate. Additionally, considering the error rate (Figure 8) and
standard deviation of the y-coordinate (Figure 9), we can
conclude that the lassoing criteria had the same accuracy.

Figure 12 shows that there were significant differences be-
tween the lassoing criteria for the mean of the y-coordinate
even if the object size and margin were small. That is, Fig-
ure 12 shows that the participants could sufficiently understand
that the tolerance shifts depending on the lassoing criteria (Fig-
ure 5). For example, when the participants use Center, they
should draw a stroke through the middle between a non-target
and target, and thus, the mean of the y-coordinate is close to
zero. Because that is shown in Figure 12, we believe that the
participants handled the lassoing criteria correctly. Addition-
ally, the participants commented that, when using Center, they
drew a stroke through the margins between the targets and
non-targets, which is also one piece of proof that they could
understand the functions of the lassoing criteria.

In summary, this experiment showed the following: (1) the
lassoing motion through the straight-line path was affected
by the same factors as in the steering operations and can be



Figure 13. Examples of participants’ trajectories for A = 480, S = 14, and W = 24 with each criterion (Lasso).

Figure 14. Examples of average speed profile.

modeled by the steering law, but (2) there were no significant
differences between the lassoing criteria in terms of move-
ment time and error rate, and (3) the participants handled the
lassoing criteria correctly.

EXPERIMENT 2: ONE-LOOP PATH
If we use a task like in Figure 15a, because the amplitude
differs depending on the lassoing criteria (Figure 2), we pre-
sume that the task completion time will differ depending on
the lassoing criteria because of steering through paths with
different amplitudes at the same speed (Figure 14). Addition-
ally, if we can model the movement time of such a task, it
can be said that we would succeed in modeling the lassoing
motion including steering at corners. That is, it can be said
that we would succeed in modeling a baseline model of the
lassoing motion in consideration of the criteria. In summary,
in this experiment, we used a one-loop path task, thereby we
evaluated the lassoing criteria and tried to build a baseline
model of lassoing motion. We used the same apparatus as in
Experiment 1 (Figure 4a) but mostly different participants and
others, which we describe below.

Participants
Twelve paid volunteers participated in this study (three women,
nine men; age: M = 22.75, SD = 2.05 years). Three of the
people had participated in Experiment 1. All participants
were right-handed and operated the stylus accordingly. Each
participant received 46 US$ for the study. Two of the people
also participated in Experiment 1.

Task
In this task, there were a blue start bar, a green end bar, white
non-targets, and yellow targets (Figure 15a). The center of
the path was at the center of the screen. First, the participants
crossed the start bar to start the task, they drew a stroke to

Figure 15. (a) Experiment 2 task outline: participants had to draw
stroke to enclose only yellow targets. (b) Checkpoints (red lines) for mea-
suring speed. Note that start bar was No. 0.

enclose all yellow targets, and they crossed the end bar to
complete it. After the participants drew the stroke, the system
created the selection range by using the stroke from where the
start bar was crossed to where the end bar was crossed. Thus,
some of the stroke before starting a trial and after finishing
it was ignored, i.e., the participants could draw a stroke with
enough run-up. If all targets were within the selection range
and all non-targets were outside it, a “success” sound was
played. Otherwise, a “failure” sound was played, and the trial
was regarded as an error. When the trial was a failure, the
same task was added to the end of the remaining tasks and
reattempted by the participant. After playing either sound, the
system changed the colors of the target and non-target borders
and displayed those selected and not selected. We asked the
participants to confirm whether the trial was a success or a
failure; if they did not understand why a trial was considered
an error, we instructed them to ask about it. After confirming
the trial result, the participants clicked a button and proceeded
to the next trial. Additionally, the same as in Experiment 1, if
a participant lifted the stylus from the screen, they had to redo
it, the object centers were not displayed for all lasso criteria,
and the stroke color changed (Figure 15a).

Design
The object size S was 12, 16, or 24 pixels (2.44, 3.26, or 4.89
mm, respectively). The interval I between the objects was 10,
14, or 20 pixels (2.00, 3.00, or 4.00 mm, respectively). Three
lasso criteria Lasso were considered: Center, Part, and Whole
(Figure 1). The numbers of target rows and columns Nrc were
3, 5, or 7; when Nrc = 3, the targets lined up in a 3 × 3 grid
and were enclosed by the non-targets (Figure 15a).

Procedure
The order of working with different criteria Lasso was bal-
anced among the 12 participants through a Latin square pat-
tern, and the orders of I, Nrc, and S were randomized. One



Figure 16. MT vs. L, I, Nrc, and S.

set consisted of 3I× 3Nrc× 3S = 32 trials. Before starting,
each participant was briefed about the experiment and lasso
selection. For each Lasso, after an introductory practice set,
each participant completed five sets to produce experimental
data. A total of 4,860 trials (i.e., 3Lasso× 3I× 3Nrc× 3S×
5 sets×12 participants) were conducted, which required ap-
proximately 45 min. We asked the participants to take a break
if necessary.

Measurements
The dependent variables included the movement time MT
(the time from crossing the start bar to crossing the end bar,
excluding error trials) and the error rate.

Results
Among the 5,336 trials, 476 errors occurred (8.92%). We
analyzed the data by using repeated-measures analysis of vari-
ations (ANOVA) and a Bonferroni post-hoc test. The indepen-
dent variables were Lasso, I, Nrc, and S, and the dependent
variables were the same as those used in the measurements.

Movement Time
We observed the main effects for I (F2,22 = 5.18, p < 0.05,
η2

p = 0.32), Nrc (F2,22 = 61.73, p < 0.001, η2
p = 0.85), and S

(F2,22 = 11.02, p < 0.001, η2
p = 0.50) but not that for Lasso

(F2,22 = 1.76, p = 0.20, η2
p = 0.14). Figure 16 shows the

results of the post-hoc test. We also observed the interactions
for Nrc× S (F4,44 = 6.57, p < 0.001, η2

p = 0.37), Lasso× I
(F4,44 = 6.41, p< 0.001, η2

p = 0.37), Lasso×S (F4,44 = 11.50,
p < 0.001, η2

p = 0.51), Lasso× I×S (F8,88 = 3.04, p < 0.01,
η2

p = 0.22), and Lasso×Nrc×S (F8,88 = 2.45, p< 0.05, η2
p =

0.18). Regarding all interactions, there were no significant
differences between Lasso (Figure 17).

Additionally, because the total amplitude differs depending
on Lasso (Figure 2, see Model Fitting for details on the am-
plitude), we also analyzed the average speed [pixels/ms], that
is, the value of MT divided by the total amplitude with the
same independent values. We did not find significant dif-
ferences between Lasso (F2,22 = 0.20, p = 0.82, η2

p = 0.02;
M = 3.14, SD = 0.36 for Center; M = 2.99, SD = 0.23 for
Part; M = 3.12, SD = 0.39 for Whole).

Error Rate
We observed the main effects for I (F2,22 = 14.95, p < 0.001,
η2

p = 0.58), Nrc (F2,22 = 13.47, p < 0.001, η2
p = 0.55), and S

(F2,22 = 19.12, p < 0.001, η2
p = 0.63) but not that for Lasso

(F2,22 = 1.56, p = 0.23, η2
p = 0.12). Figure 18 shows the

results of the post-hoc test. We also observed the interaction

Figure 17. MT for Lasso× I×S and Lasso×Nrc×S.

Figure 18. Error rate vs. Lasso, I, Nrc, and S.

for I× S (F4,44 = 3.26, p < 0.05, η2
p = 0.23). Increasing I

and/or S decreased the error rate.

Subjective Evaluation
After this experiment, we asked the participants how easy the
operations were for each criterion on a 5-step Likert scale (1:
disagree, 3: neutral, 5: agree). We analyzed the data by using
a non-parametric Friedman test with Lasso as the independent
variable. As a result of analysis, there were no significant
differences (χ2

2 = 3.38, p = 0.18, Figure 19). The participants’
preferences varied, e.g., some liked the faster but less accurate
method, others liked the slower but more accurate method.

Model Fitting
First, we analyzed the speed of the lassoing motion when using
checkpoint method [16] for selecting candidate models. For

Figure 19. Likert-scale responses to “how easy were the operations for
each criterion" (N = 12).



Figure 20. Examples of average speed profile (green lines indicate check-
points at corners).

example, when Nrc = 3, we set the checkpoints as shown in
Figure 15b and measured the speed from when the participants
crossed one red line to when they crossed another red line.
Figure 20 shows examples of the average speed profile. We
found that the speed from one checkpoint to another had only
one peak velocity; the participants’ movement was the steering
motion, not the series of successive crossing motions. In
addition, the speed sharply slowed down at the corners (see
the speed on the green lines in Figure 20).

Second, we determined the participants’ trajectories (Fig-
ure 21). As shown in Figure 21, the participants drew dif-
ferent strokes, and thus, the strokes were close to the center
in the order of Part, Center, and Whole. This is evidence that
the participants steered through different paths as shown in
Figure 2 depending on the lassoing criteria.

In summary, the participants’ movement was the steering mo-
tion, and, on the basis of the results of Experiment 1 (straight-
line path task), the steering law is considered as a candidate
model. In addition, the speed decreased at the corners; thus,
the participants’ movement was the stop and go motion [11],
and thus, a model in which the steering law is added to Fitts’
law is also considered as a candidate model. Moreover, the
participants steered through different paths depending on the
lassoing criteria, so the amplitude that the models used should
be changed depending on the lassoing criteria. For example,
when modeling Lasso =Center, the movement distance of the
first and fourth straight path segments is NrcI +NrcS− I

2 , that
of the second and third path segments is NrcI +NrcS, and the
tolerance is I+S. Thus, the index of difficulty of the “steering

Figure 21. Examples of participants’ trajectories for each criterion
(Lasso).

Table 2. IDs (steering index of difficulty) and IDp (pointing index of
difficulty) for each criterion.

Lasso IDs IDp

Center 4Nrc− I
I+S log2

(
Nrc− I

2(S+I) +1
)
+2log2(Nrc +1)

Part 4Nrc +
2(Nrc−2)I

I+S −3 log2
(
Nrc +

1
2

)
+2log2

(
Nrc +

(Nrc−2)I
I+S

)
Whole 4Nrc +

4S
I+S −1 log2

(
Nrc +

S
I+S +

1
2

)
+2log2

(
Nrc +

S
I+S +1

)

model” (Table 3) can be written as follows:

IDs =
2(NrcI +NrcS− I

2 )+2(NrcI +NrcS)
I +S

= 4Nrc−
I

I +S

(5)

Movement around the corners is the stop and go motion, and
thus, the “steering model with pointing” (Table 3), which
considers the stop and go motion, has an index of difficulty for
the pointing in addition to IDs. IDp can be written as follows:

IDp = log2

(
NrcI +NrcS− I

2
I +S

+1

)

+2log2

(
NrcI +NrcS

I +S
+1
)

= log2

(
Nrc−

I
2(S+ I)

+1
)
+2log2 (Nrc +1)

(6)

Modeling other criteria similarly, we obtain Table 2.

As shown in Table 3, which shows the fitness of the two models
for all Lasso, all models showed good fitting. However, the
steering model has two constants, and the steering model with
pointing has three. Because the steering model with pointing
is an incremental version of the steering model, generally
speaking, it definitely shows a higher R2. Thus, we compared
Akaike Information Criterion (AIC) [4] in addition to R2. A
model that shows a good fit shows a higher R2 and lower
AIC [13, 16], and it is sufficient that the difference between



Table 3. Model fitting for all Lasso with adjusted R2 and AIC values (N = 27). a, bs, and bp are estimated regression constants with 95% confidence
intervals (CIs) [lower, upper].

Lasso Model Equation a bs bp adj. R2 AIC

Center
Steering MT = a+bsIDs

283 80.7 0.919 358[74.8, 482] [70.6, 90.8]

Steering with pointing MT = a+bsIDs +bpIDp
797 106 -135 0.920 359[-1233, 2828] [4.97, 208] [-666, 396

Part
Steering MT = a+bsIDs

474 62.3 0.987 304[410, 539] [59.3, 65.3]

Steering with pointing MT = a+bsIDs +bpIDp
602 69.6 -36.1 0.987 305[193, 1012] [46.5, 92.6] [-150, 77.9]

Whole
Steering MT = a+bsIDs

55.2 93.0 0.968 338[-101, 212] [85.9, 100]

Steering with pointing MT = a+bsIDs +bpIDp
783 124 -176 0.969 340[-969, 2534] [49.3, 199] [-598, 246]

AIC values is over two [5]. As shown in Table 3, for all Lasso,
the steering model can sufficiently predict the movement time.

Discussion
In Experiment 1, increasing S decreased the movement time
(Figure 6); however, in Experiment 2, increasing S increased
the movement time (Figure 16), i.e., S in Experiments 1 and 2
produced opposite effects. Because the task in Experiment 2
was a one-loop path, increasing the object size (S) increased
not only the tolerance but also the amplitude at the same time.
In comparison, in Experiment 1, because the number of the ob-
jects was controlled by A, increasing the object size increased
the tolerance but not the amplitude. That is, S affected the
path amplitude in only Experiment 2, and thus, results such as
those in Figure 16 were obtained.

As shown in Table 3, the steering model with pointing did
not show significantly better fitting. According to Pastel’s
study [11], when the path width is narrow, the motion becomes
stop and go. In this experiment, the path width was somewhat
wide (S + I), and, as shown in Figure 20, the participants’
movement did not stop completely, i.e., the speed decreased to
approximately 40% of the peak speed. Thus, we believe that
the pointing term did not contribute to improving the fitness.

SUMMARY OF TWO EXPERIMENTS
The lassoing operations consisted of steering through a
straight-line path and turning at a corner. In this study, we con-
ducted two experimental tasks, i.e., steering through straight-
line and one-loop paths, and we found that our results can
be modeled on the basis of the steering law. Of course, the
application of our current model is limited to straight-line and
one-loop paths. However, succeeding in modeling a straight-
line path and path with a corner means that it is possible to
model lassoing motions through any grid paths. That is, in this
study, we succeeded in modeling a baseline model for lassoing
motions in consideration of the criteria.

In addition, we found that the movement time, error rate, and
subjective evaluation had no significant differences between
Lasso. Thus, we believe that the ease of use of and the per-
formance of Lasso were consistent. As shown in Figures 1
and 2, the path amplitude and objects to be selected differed

depending on the lassoing criteria. Moreover, in pointing op-
erations, it is known that when an area in which click events
are fired is unclear, the movement time increases more than
when it is clear [14]. When using Center, because the width
is the interval between the centers between objects, i.e., the
width is unclear, we presumed that the movement time would
increase. However, we found that the performance and subjec-
tive evaluation did not depend on the lassoing criteria.

Because we succeeded in building the baseline model, UI
designers can predict the movement time when using the three
lassoing criteria under unknown conditions. For example,
when Nrc = 9 (i.e., targets aligned in a 9 × 9 grid), S = 18,
and I = 16, the designers would obtain 3150 ms for Center,
2941 ms for Part, and 3506 ms for Whole.

LIMITATIONS AND FUTURE WORK
As shown in Figures 14 and 20, we found that there were no
significant differences for the speed between Lasso. Thus, in
selecting multiple objects in a large-scale display [9, 12] (i.e.,
steering through a path with a long amplitude), it is possible
that there will be significant differences for the movement time
between Lasso.

In this study, we considered a case in which the number of
target rows and columns was the same. For example, in a 2× 1
grid, users can draw a stroke like in Figure 22. For Center and
Part compared with Whole, users can make the stroke around
the first and second corners one sharp corner. It is known that
users steer through a corner with obtuse or acute angles at a
higher speed [11], and thus, in a task like in Figure 22, when
using Center or Part, they may operate faster than that like in
Figure 15a.

Our study does not include lassoing operations in more com-
plex conditions, e.g., objects with random sizes, layouts, and
shapes. For example, when using Circle, the center of a rectan-
gular object is somewhat clear; however, for free form objects,
the center is more unclear. In addition, we believe that it would
be convenient for a model to include different lassoing criteria
because the movement time of other criteria not investigated
in this study could be predicted. For example, the movement
time for a criterion in which objects of which 80% of their



Figure 22. Example of trajectories in 2 × 1 by (a) Center, (b) Part, and
(c) Whole.

area is in the selection range are selected could be predicted.
Thus, we will refine our model in further studies.

CONCLUSION
We conducted two experiments in which participants steered
through straight-line and one-loop paths by using three las-
soing criteria. Our experimental results indicated that the
participants handled the lassoing criteria correctly, and they
performed the lassoing at an appropriate speed for each path
shape. Although the trajectories that the participants drew
changed depending on the lassoing criteria, there were no sig-
nificant differences in terms of movement time, error rate, and
subjective evaluation between the criteria. In addition, we suc-
cessfully constructed a baseline model (i.e., the steering law)
to predict the movement time of any of the three criteria. Based
on our results, UI designers can select any one of the three
criteria. In the future, we will conduct further experiments and
refine our model; thereby, we hope that the movement time
in lassoing operations can eventually be predicted under any
conditions.
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