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0BABSTRACT 
We investigate stroking motions through successive objects 
with styli. There are several promising models for stroking 
motions, such as crossing tasks, which require endpoint 
accuracy of a stroke, or steering tasks, which require 
continuous accuracy throughout the trajectory. However, a 
task requiring users to repeatedly steer through constrained 
path segments has never been studied, although such 
operations are needed in GUIs, e.g., for selecting icons or 
objects on illustration software through lassoing. We 
empirically confirmed that the interval, trajectory width, and 
obstacle size significantly affect the movement speed. 
Existing models can not accurately predict user performance 
in such tasks. We found several unexpected results such as 
that steering through denser objects sometimes required less 
times than expected. Speed profile analysis showed the 
reasons behind such behaviors, such as participants’ 
anticipation strategies. We also discuss the applicability of 
exiting performance models and revisions.  

11BAuthor Keywords 
Graphical user interfaces; human motor performance; 
steering; crossing; pen computing. 

12BACM Classification Keywords 
H.5.2. [Information interfaces and presentation]: User 
Interfaces – Theory and methods. 

1BINTRODUCTION 
Studying models of human motor performance is a core topic 
in the field of human-computer interaction (HCI). In addition 
to deriving new models, testing the validity of existing ones 
in different circumstances is also important. As a well-known 
example, Fitts’ law [18] has been confirmed to hold for 
various kinds of tasks [46]. Besides, creating appropriate 
models for a given task condition is also important for 
modeling task performance. For example, when a pointing 
task is extremely easy (Fitts’ index of difficulty is less than 3 
bits), solely the movement distance affects the performance 
[20, 22]. Thus, knowledge of the limits of existing models 

gives us a better understanding when a given model is 
appropriate. 

We investigate user performance during stroking motions in 
a situation as shown at the top of Figure 1a; where users 
make a stroke while avoiding obstacles. Such motions are 
required for lassoing objects in illustration or presentation 
software. Here, we focus on straight stroking motions, as 
illustrated in Figure 1b-f, which form a crucial step towards a 
better understanding of general lassoing motions. 

 
Figure 1. (a) Lassoing icons. Icons whose entire area is inside of 
the loop are selected (highlighted in blue). The start and end 
points are automatically closed. The work presented here 
focuses on the straight stroking segments. (b-f) Steering through 
obstacles with various conditions. 

Here we investigate which predictive model is suitable to 
forecast user performance for such straight stroking motions. 
Based on previous work, three parameters are likely to affect 
user performance, as illustrated in Figure 1b. If the inter-
obstacle distances in the direction of the movement (here 
interval I) are very small (Figure 1c), this task could be 
modeled by the steering law [1]. Instead, if intervals are large 
and the obstacle size (S) small (Figure 1d), this could be 
regarded as a series of crossing tasks [1, 4]. Else, for large 
intervals and passing through obstacles with large S (Figure 
1e), the task could be modeled partially by the steering law, 
while entering each successive pair of obstacles could be 
modeled by the crossing law [55]. Lastly, as predicted by 
both the steering and the crossing laws, the width (W) of the 
path should affect movement time; as W decreases, speed 
decreases (Figure 1f). Although lassoing performance has 
been studied [9, 25], we found no work that distinguishes 
between the above-mentioned models for a practically 
relevant range of task conditions. 

To better understand the stroking motions, and for selecting 
appropriate models for each task, we conducted an 
experiment to investigate the effects of task parameters of 
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obstacle interval (I), tolerance width of the path trajectory 
path (W), and obstacle size (S). Our contributions include: 

1) We validate prediction accuracies of existing models: the 
crossing law, steering law, and a ballistic model 
combining the two laws. Results show that the ballistic 
model is not strictly necessary, but also that a 
combination of the crossing and steering laws show the 
best prediction scores, both in R2 and AIC values. 

2) Based on a speed profile analysis, we discuss the effects 
of I, W, and S. We identify that participants anticipate 
future obstacles and adapt their speed depending on the 
subsequent path width. Users tend to move slower than 
the speed associated with the future path, even when the 
pen-tip is currently within an (unconstrained) interval. 

3) We also analyze if participants perform open- or closed-
loop motions and found evidence for both as well as 
combinations. For example, users performed a series of 
crossing motions for the longest intervals (152 mm), a 
single steering motion for the shortest ones (2 mm), and a 
combination for medium intervals (42 and 92 mm). 

RELATED WORK 
In this section and afterwards, a and b in equations are 
empirically determined regression coefficients. 

 
Figure 2. (a) A crossing law task and (b) a steering law task. 

Crossing Law 
The crossing law [4] shows that the movement time (MT) to 
cross a goal line of length W at a distance A from the initial 
position (see Figure 2a) is modeled by Fitts’ law [18, 31]: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 log2 �
𝐴𝐴
𝑊𝑊

+ 1� (1) 

where the logarithmic term is called index of difficulty of 
crossing tasks (IDC): 

𝐼𝐼𝐼𝐼𝐶𝐶 = log2 �
𝐴𝐴
𝑊𝑊

+ 1� (2) 

This relationship has been confirmed to hold for various 
input devices [19, 29, 50]. Crossing outperforms pointing in 
certain conditions for stylus operations [7, 41, 50]. For a 
condition with large interval (I) and small obstacle size (S), 
we assume that the crossing law models the movement 
through such a tunnel well. More effective techniques and 
tools have been proposed [6, 8, 30, 38, 47, 56]. Conditions 
for crossing motions have been also studied, such as crossing 
angles [7] and land-on/take-off distances [14]. 

For pointing tasks, when the target width (W) is too large, 
users do not have to carefully position the cursor on the target. 
Thus, MT tends to be affected only by A [20]: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏√𝐴𝐴 (3) 

We assume that this model for pointing tasks can also be 
applied for crossing tasks with large W. This assumption is 
not new [21], yet has not been tested empirically. 

Laws of Steering 

Steering Law 
Models of steering motions have been proposed for several 
purposes [16, 39, 40]. In the HCI field, Accot and Zhai’s 
global form of the steering law [1] is a well-known model: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏�
𝑑𝑑𝑑𝑑
𝑊𝑊(𝑑𝑑)𝐶𝐶

 (4) 

where C is a given path, x is a position in the path, and W(x) 
is the path width at x. For a linear and constant-width path as 
shown in Figure 2b, the model simplifies to: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏
𝐴𝐴
𝑊𝑊

 (5) 

where A is the path length and W is the path width. A/W is 
called the index of difficulty for steering tasks (IDS): 

𝐼𝐼𝐼𝐼𝑆𝑆 =
𝐴𝐴
𝑊𝑊

 (6) 

Another formulation of the steering law is: 

𝑉𝑉 = 𝑎𝑎 + 𝑏𝑏𝑊𝑊 (7) 

where V is the average speed for the entire path: V=A/MT. 
Although Equation 7 tends to show a relatively worse model 
fit than the MT form (Equation 5) [21], they both imply that 
speed increases linearly with path width. Some researchers 
recommend to use the effective width method for both Fitts’ 
[31, 46] and steering [23] laws. Yet, we use only nominal 
parameter values here due to concerns raised in previous 
work, e.g., [51, 57]. The steering law holds for many 
computer input devices [2], changes of motor scale [3], 
movement angle [49], temporal constraint [61], speed- or 
accuracy-emphasized conditions [62], car driving [59], 
narrowing and widening path shapes [53, 54], and implicit 
path tolerance (a condition where the path boundary is not 
visible) [23]. 

While Equation 7 uses the speed in the entire path, Accot and 
Zhai also proposed an instantaneous speed model [1] that is 
proportional to the current path width: 

𝑣𝑣(𝑑𝑑) =
𝑊𝑊(𝑑𝑑)
𝜏𝜏

 (8) 

where v(x) is the speed at the position x, and τ is the 
empirically-determined time constant. 

Other Variations for Steering Operations 
Although the steering law models, Equations 5 and 7, have 
been validated in various tasks, refined versions are required 
for some conditions. For example, models for steering 
through a path with a corner [37] and pointing at a target 
after steering a path [24, 44] have been proposed. 



When the path width W is too large, users can ignore the path 
boundary, and thus W does not affect the movement speed 
and the operational time [1, 7, 16, 17, 27, 44, 45, 48, 49]. In 
such conditions, V is limited by the user’s motor performance, 
and MT is affected only by the path length A [48]. The 
steering model then takes the same form as the ballistic Fitts’ 
law model (Equation 3). This model is appropriate for large 
W conditions in our work. 

While the above models target a single path segment, recent 
work investigated steering through sequential path segments 
[55]. In that study, participants had to steer through two 
straight, connected path segments. Although a model derived 
from the global one (Equation 4) fit well, participants 
significantly changed their strategy contingent on the path 
narrowing or widening. Yet, it is hard to predict if we can 
directly apply Yamanaka et al.’s [55] findings to more 
general tasks, such as the tasks illustrated in Figure 1, i.e., if 
the global steering model can be used for sequential path 
segments. As our work includes many more path segments 
(up to 62 obstacles), the empirical results will deepen our 
understanding of steering actions. 

Lassoing Operations 
To facilitate the selection of larger groups of objects, several 
researchers have presented group selection methods [12, 13, 
26, 28, 35, 43, 47, 52], which include various lasso and/or 
brush-based selection techniques. A first, high-level model of 
group selection [9] proposes a linear model for time and task 
difficulty. 

 
Figure 3. Potential criteria to detect which objects are lassoed. 
Yellow-highlighted icons are selected by the green stroke. The 
loop between start and end points is automatically closed, as 
depicted by the red dotted lines. (a) Objects inside of a loop or 
crossed by the stroke, (b) objects whose center is inside of the 
loop, and (c) objects whose entire area is inside of the loop. The 
work presented here directly applies to the last criterion. 

There are several ways to decide how objects are selected by 
a lassoing operation. For example, in Adobe Illustrator CS6, 
objects inside of an enclosed loop or objects crossed by the 
stroke are selected (Figure 3a). Mizobuchi and Yasumura 
[34] proposed that objects whose center point is inside of an 
enclosed loop are selected (Figure 3b). The scope of our 
experiments matches a widely-used criterion, namely that 
only objects inside the lasso loop that are not touched by a 
stroke are selected, as in, e.g., Apple Keynote (Figure 3c). 
This is equivalent to having the user avoid touching obstacles, 
as shown in Figure 1. Note that the different lasso criteria 
shown in Figure 3 permit the user to effectively draw through 
a wider tunnel compared to the task portrayed by the object 
spacing. Given that this could confuse users, we remove this 
confound here, by matching the visual appearance of the 
tunnel to the task requirements. 

In summary, existing models can accurately predicts user 
performance for passing through a single goal line [4], a 
single [1] or two path segments [37, 55] for both of ballistic 
and visually-controlled movements. Also, the number of 
icons can predict lassoing time [9]. Yet, we wanted to 
explore if (a) steering performance through more than two 
goal/path segments is predicted by existing models, and (b) 
which task parameters affect user strategies and behaviors. 
Answers to these questions will lead to better understanding 
of more complex actions, such as lassoing multiple icons. 

RESEARCH QUESTIONS 

Appropriate Models and Parameter Interactions 
The steering law was derived through the assumption that 
steering involves an infinite number of crossing motions [1, 
59]. Yet, no one empirically confirmed if the steering law 
applies to a limited number of crossing motions. E.g., when 
there are 51 goals within 50 mm amplitude, i.e., goals at 1 
mm intervals, as shown in Figure 4a (top), we assume that 
these 50 crossing tasks can be modeled by a single steering 
IDS value. Yet, one can hypothesize that, as the number of 
goals decreases, the crossing law would become the more 
appropriate model, as shown in Figure 4a (middle, bottom). 

Similar arguments can be made for another task parameter, 
the obstacle size S. While crossing law experiments used a 1-
pixel (practically <1 mm) line as a target [1, 4, 7, 29, 30], 
does the crossing model hold for goals with a larger 
“thickness”, e.g., 5 or 20 mm, as shown in Figure 4b? The 
steering law holds for tasks that require continuous visual 
feedback; when IDS (=A/W) is greater than 8 [49] or 15 [45] 
bits. Otherwise, users can accomplish the task with only a 
ballistic movement [48]. However, these thresholds were 
confirmed only for tasks with single path segments. 

 
Figure 4. (a) The steering law is the appropriate model for short 
crossing intervals, but with larger intervals, multiple crossing 
laws could be more appropriate. (b) The crossing law would be 
appropriate for a short-distance goal line, but as the size 
increases, the steering law could become more appropriate. 

Our central research question thus is: which of the crossing 
or steering law (including models for ballistic movements) is 
more appropriate to predict such movements, depending on 
given task conditions. Based on the above discussions, 
interval (I) and obstacle size (S) would transition user 
behavior between a crossing and a steering “mode” and back. 
Because the speed is limited by the trajectory width, W 
would affect performance as well. For example, when W is 
too large, we may not have to distinguish between crossing 
or steering, because they become the same model, Equation 3. 



When W is small, users steer the path more carefully and 
hence use a steering mode, even in shorter path amplitudes (S 
in Figure 4b) [48]. Thus, we aim to identify the interactions 
of I, W, and S in our work. 

Single Steering versus Successive Crossing 
When users move a stylus or a cursor from a wide path to a 
narrow path, they decelerate well in advance of the path joint 
[55]. Therefore, we assume that when faced with successive 
narrow path constraints with short intervals, as shown in 
Figure 1f, users cannot accelerate in the intervals and hence 
the task is better modeled by the steering law using the 
narrower constraint (i.e., W in Figure 1f) rather than the 
crossing law. More specifically, as shown in Figure 5, 
although wider path segments (W1) might exist, users would 
adjust the speed in the narrower regions as predicted by the 
narrower width, W2. Hence, a potential model is: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 �
6(𝐴𝐴1 + 𝐴𝐴2)

𝑊𝑊2
� (9) 

rather than a model derived from the global steering law: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 �
6𝐴𝐴1
𝑊𝑊1

+
6𝐴𝐴2
𝑊𝑊2

� (10) 

Such an assumption has been already proposed [15, 55]. We 
empirically test if such a condition can be modeled by 
Equation 9, i.e., we attempt to model this motion as a single 
steering task using the narrower width (W2). 

 
Figure 5. A sequence of six wide and six narrow alternating path 
segments. 

PILOT STUDY 
Before the main study, we conducted a pilot study to confirm 
our most fundamental hypothesis that the interval (I), 
obstacle size (S), and path tolerance width (W) parameters 
affect user performance. 

21BApparatus 
The system was a Sony Vaio Z (Intel Core i7-5557U, 3.10 
GHz, 4 cores; Intel Iris graphics 6100; 16 GB RAM; 
Windows 10 Pro). The input device and the display was a 
Wacom Cintiq 27 QHD Touch DTK-2700/K0 (27” diagonal, 
596.7 × 335.6 mm active input area, 2560 × 1440 resolution, 
4.29 pixels/mm; 12 ms response time). The experimental 
system was implemented with Hot Soup Processor 3.4 in 
full-screen mode. The system reads and processes input 
about 125 times per second. The pen tablet was positioned on 
a table in “stand” mode (20° angle, Figure 6a). All 
participants wore a cotton artist glove to reduce friction. 
They were informed that their palms could touch the surface, 
as we had disabled touch sensing. 

22BParticipants 
Five volunteers participated in the experiment, two were 
female and three male. The average age was 23.4 years (SD = 

2.06). All participants had normal or corrected-to-normal 
vision and were right-handed. 

 
Figure 6. (a) Experimental setup and (b) visual stimuli. Our 
work focuses on the part of the stroke highlighted in purpose, 
which has length AN. This corresponds to a cyclic movement 
criterion, see the text. 

23BTask 
We reused the color scheme from previous work [23, 53, 55] 
for the task areas: a blue starting area, a white path, and a 
green end area. Participants sat centered in front of the pen 
tablet at a comfortable distance to move the stylus on the 
surface (up to ~500 mm). They were asked to make a stroke 
from the start to the goal area as quickly and accurately as 
possible. A crosshair cursor left a trace from the moment of 
pen contact until lift-off. A bell sound confirmed that the 
cursor had crossed the end line. Participants were only 
permitted to stroke through white-colored regions. A beep 
sounded when the cursor touched a gray-colored obstacle. 
Then the participant had to retry the same task again. Such a 
touch was counted as an erroneous attempt.  Consistent with 
other steering law studies [3, 53, 55], lifting the pen tip in a 
trial was not considered an error, but the participant still had 
to redo the task. Re-starting within a path or hovering was 
not permitted. 

24BDesign and Procedure 
The total movement distance from the start line to the end 
line was fixed to 300 mm (or 1287 pixels). We tested 
combinations of two I, two W, and two S values as shown in 
Table 1. The total number of parameter combinations was 
thus 2(I) × 2(W) × 2(S) = 8. One block consisted of a random 
ordering of these 8 conditions. Participants first performed a 
single practice block, and then six blocks for data collection. 
Movement direction was always to the right. The recorded 
data for the actual tasks were 8 conditions × 6 blocks × 5 
participants = 240 trials. Participants took 4 to 5 minutes 
from the instructions to the completion of all tasks. 

 I W S 
mm 2 92 8 32 5 80 
pixel 8 394 34 137 21 343 

Table 1. I, W, and S values tested in the pilot study. 

Data Analysis 
The margin from the start line to the first obstacle differed 
depending on the combination of I and S. Thus, we cannot 
use the movement time from the start to the end line as MT in 



the existing models. In addition, because the crossing law 
assumes that the goal line has no thickness (S = 0), and the 
steering law ignores the time to enter a path segment, we 
cannot directly apply existing models to our experimental 
conditions. Based on this reasoning, we analyzed the 
obtained data with a cyclic movement criterion, as shown in 
Figure 6b. If there are (N+1) obstacle pairs, participants 
repeatedly crossed or steered through obstacles N times. 
Hence, the movement amplitude for a single cycle, Acycle, is 
(I+S), and the amplitude for N cycles, AN, is (Acycle×N) or 
((I+S)×N). We define the time required for the distance of AN 
as MTN, and the time for a single cycle as MTcycle = MTN/N. 
Although other definitions are possible, e.g., Acycle could be 
the distance between the centers of two successive obstacles, 
there would be only a small difference in terms of MTN 
between each different definition, if participants repeatedly 
steered through (N+1) successive obstacle pairs for a 
sufficiently long total movement distance. 
Because MTN depends on the total distance for the movement 
amplitude AN, a direct comparison of MTN values for 
different I and S conditions is not sensible to analyze 
parameters effects. Instead, we compare the movement speed 
normalized to a single obstacle, i.e., Vavg = AN/MTN, which is 
(mostly) independent from the total movement distance, as it 
depends only on the ratio of time and distance. 

26BResults 
We recorded 266 trials including four lifting-pen instances 
(1.5%). After excluding these four, we identified 22 errors 
among 262 data points (8.4%). Following previous work [1, 
2, 3, 53, 54, 55], we analyzed only error-free trials via 
repeated-measures ANOVA with a Bonferroni post hoc test. 

Figure 7 shows the average speed, Vavg=AN/MTN. We 
observed a main effect for W (F1, 4 = 53.954, p < .01, 𝜂𝜂𝑝𝑝2 = 
0.931) and a significant interaction for I × S (F1, 4 = 7.829, p 
< .05, 𝜂𝜂𝑝𝑝2 = 0.662). We observed no other significant effects. 

 
Figure 7. Results of the pilot study. Error bars show standard 
error. 

Discussion of the Pilot Study 
Although a limited number of trials were performed by only 
five participants, all parameters (I, W, and S) affected the 
average speed V as a main effect or an interaction, which 
indicates that we are indeed observing behavior changes.  

Because both the crossing and steering laws predict that W 
affects MT (and thus V), it is not surprising that W has a main 
effect. We also observed the predicted interaction of I × S. 

When I is small (2 mm), the task resembles a single steering 
law task, as shown in Figure 1c. Thus, in this condition, V 
was not significantly affected by S, as shown in Figure 7d 
(the left pair of bars). On the other hand, when I was large 
(92 mm) and S was small (5 mm), the task resembles 
multiple crossing tasks (Figure 1d), and hence the speed was 
higher than in the steering conditions. When both I (92 mm) 
and S (80 mm) were large, the task resembles multiple 
steering tasks (Figure 1e), which reduces the speed compared 
to crossing. This significant difference is visible in the right 
pair of bars in Figure 7d.  
Based on observations from our pilot study, participants 
seemed to move the stylus more slowly in steering motions, 
even for longer interval (I = 92 mm), rather than using 
successive crossing motions. Three of the participants did not 
perceivably accelerate in the intervals. This motivated us to 
include considerably larger I values in the main study. On the 
other hand, participants seemed to be unable to accelerate 
with shorter intervals (I = 2 mm) in each single steering 
motion; this is also shown in Figure 7d (left pair). Thus, we 
decided to evaluate intervals from 2 up to 152 mm. 
For the wider tolerance (W = 32 mm), all participants rapidly 
steered the path regardless of the I and S values, as if they did 
not have to move the stylus carefully. For the narrower 
tolerance (W = 8 mm), all participants carefully steered the 
path, and sometimes made errors if their speed was a little 
too high. Hence, we can confirm that path width affected 
performance. Therefore, we decided to re-use the range of 8 
to 32 mm for W for the main study. 
Based on our observation of participants’ behaviors, S = 5 
mm seemed to be a good approximation of a goal “line” in 
crossing tasks; for the longer intervals (I = 92 mm), two 
participants accelerated after passing through a pair of 
obstacles, and then decelerated to pass through the next pair, 
like a general crossing law task. On the other hand, S = 80 
mm seemed to be still short, because two or three participants 
did not seem to exhibit steering behaviors between pairs of 
obstacles. This motivated us to include larger S values, e.g., 
120 or 130 mm, in the main study. 

MAIN STUDY 
In this main study, we tested the effects of path parameter 
values on user performance more comprehensively. In 
addition to the pilot study metrics, we also collected data for 
more detailed analyses, such as plotting the speed profiles. 
Only the participants and path parameter values were 
changed from the pilot study. 

Participants 
Eleven volunteers participated, two were female, with an 
average age of 22.9 years (SD = 2.61). All participants had 
normal or corrected-to-normal vision and were right-handed. 
Three of them had also participated in the pilot study. 

Design and Procedure 
The total movement distance from the start to the end line 
was fixed to 420 mm (1801 pixels). The corresponding land-



on (in the start area) and take-off (in the end area) widths 
were sufficiently long (88 mm for each side). We tested four 
interval (I), three width (W), and four obstacle size (S) values, 
as shown in Table 2. One block consisted of a random 
ordering of 4(I) × 3(W) × 4(S) = 48 conditions. Participants 
performed ten trials randomly selected from these conditions 
for training, and then four blocks for data collection. 
Movement direction was always to the right. The recorded 
data were 48 conditions × 4 blocks × 11 participants = 2112 
trials. Participants took 12 to 15 minutes for this study. 

 I W S 
mm 2 42 92 152 8 16 32 5 25 65 125 
pixel 8 18 394 652 34 68 137 21 107 278 536 

Table 2. I, W, and S values tested in the main study. 

26BResults 
We recorded 2331 trials. 22 instances (0.94%) of pen lifting 
were observed and excluded. A total of 197 errors (8.5%), 
where participants touched an obstacle, were identified. We 
analyzed only error-free trials via repeated-measures 
ANOVA with a Bonferroni post hoc test. 

Error rate 
We found a main effect of W (F2, 20 = 12.577, p < 0.001, 𝜂𝜂𝑝𝑝2 = 
0.557). Other main effects and interactions were not 
significant (p > 0.05). Therefore, based on the speed-
accuracy tradeoff [58, 61, 62], the effects of I and S should be 
visible in the speed results. 

Average Speed 
For average speed, Vavg=AN/MTN, all parameters showed 
main effects: I (F3, 30 = 41.637, p < 0.001, 𝜂𝜂𝑝𝑝2 = 0.806), W (F2, 

20 = 379.267, p < 0.001, 𝜂𝜂𝑝𝑝2 = 0.974), and S (F3, 30 = 693.287, 
p < 0.001, 𝜂𝜂𝑝𝑝2 = 0.986). All interactions (I × W, I × S, W × S, 
and I × W × S) were significant, all with p < 0.001. 

 
Figure 8. Illustration of the main effects for speed. Error bars 
show standard error. (*p < 0.05, **p < 0.01, ***p < 0.001) 

Figure 8 illustrates the effects of the path parameters. We 
show regression lines for each one, even though some of the 
model fitness values are small. Figure 9 shows the 
interactions. Figure 9c and d show the same data, each with a 
different parameter shown on the x-axis (S versus I). 

Discussion with Speed Profile Analysis 
Figure 10a shows the speed profiles along the x-axis for all 
48 conditions. Because the raw data at 8 ms sampling rate 
were very noisy, we re-sampled the cursor trajectories at 40 
pixel intervals on the x-axis, which corresponds to 9.3 mm 
intervals. This re-sampling better reveals the difference in top 
and average speeds between crossing and steering motions, if 
users clearly exhibited the different behaviors. 

 

 
Figure 9. Results of the interactions. Error bars show standard 
error. (*p < 0.05, **p < 0.01, ***p < 0.001) 

 
Figure 10. Speed profile for (a) all 48 conditions and (b) each W 
condition. Note that the speed at the start is not defined. 

Effect of Path Width (W) 
In Figure 10a, we can see three bands of speed “waves”, 
which seem to be separated by W values. Figure 10b shows 
the average speed profiles for each W value. Interestingly, 
while speeds for W = 8 and 16 mm gradually increased 
overall, the speed for W = 32 mm decreases from about ~330 
mm onwards. Participants could perform arc-like movements 
in ballistic mode in this condition, and reached a top speed 
somewhere in the middle of the movement (roughly centrally 
in front of their body). Yet, they could not keep such a high 
speed until the end. In contrast, for the visually-controlled 
modes with W = 8 and 16 mm, they could keep accelerating 
until the end, which is consistent with steering law tasks in a 
single path segment [55]. Because operations modeled by 
Fitts’ law show short acceleration and long corrective 
movements [33], we regard movements in W = 8 and 16 mm 
as steering motions rather than crossing ones (disregarding 
the effect I and S values). 

Effect of Interval (I) 
Steering or Crossing Motions: To deeper analyze the speed 
profile, and to understand the obstacle parameter effects on 
participants’ strategies, we show several graphs that illustrate 
the behavioral differences. Figure 11 shows speed profiles 
for W = 8 mm (most visually-controlled condition) and S = 5 
mm (thinnest obstacle condition). 

As I decreases, we expected that the task to become more of 
a steering law task rather than crossing. Figure 11a (I = 2 
mm) shows a typical steering motion with gradual 
acceleration, which is similar to the speed profiles reported in 
previous work (Figure 9 in [55]). On the other hand, Figure 
11d (I = 152 mm) shows clear peaks in each interval; 



participants began to accelerate after passing a pair of 
obstacles, and then decelerated to enter the next obstacle pair. 
Hence, we can empirically observe that participants 
performed a series of two crossing motions. In Figure 11c (I 
= 92 mm), we can see weak accelerations and decelerations 
in the intervals, but they are not as clear as in Figure 11d (I = 
152 mm). We cannot find a clear peak in Figure 11b (I = 42 
mm). Therefore, we see evidence that the transition between 
steering and crossing happens between I = 42 and 92 mm. 
These results show that, as expected, as I increases it changes 
participants’ behaviors from steering to crossing. 

 
Figure 11. Speed profile for W = 8 mm and S = 5 mm. While 
speeds generally increase, for I = 152 mm there is clear evidence 
of several distinct crossing motions. While these speed profiles 
show the re-sampled instantaneous speed, average speeds are 
calculated by AN/MTN using the mean-of-means method for 
ANOVA. Thus, average speeds tend to be lower than the plotted 
speeds. Note: as we focus on N-cycle movements we ignore the 
speed after the final obstacle pair. 

Top Speed and Average Speed: We expected that 
participants would attain higher speeds for larger values of I, 
because there were less obstacles to avoid. Interestingly, 
Figure 11 does not show such a clear increase in Vavg with 
increasing I. A potential reason is the point where we 
measure the top speed: the highest peak before the final 
obstacle. Because users gradually accelerate in a steering 
motion [55], the final peak could show the highest speed. Yet, 
Figure 11a and b show that the speed for I = 2 mm was 
usually higher than that for I = 42 mm throughout the path 
from start to end. Thus, the location for measuring the top 
speed cannot be the only factor. 
Another potential explanation is that participants anticipate 
the next pair of obstacles. For I = 2 mm, they had to 
continuously attend to their pen-tip movement to avoid 
hitting the path boundary. Thus, they could only gradually 
reach the top speed, limited by the path width [48]. On the 
other hand, if obstacles were sparser, they had to avoid 
“hitting” the next obstacle when the pen-tip was within 
intervals. Because users tend to decelerate more than 
necessary before entering a path which is narrower than the 
current width tolerance [55], we assume that “new” 
decelerations were produced successively in such trials and 

this affected the speed negatively. Thus, participants were not 
able to accelerate sufficiently in intervals, although the 
interval had practically infinite tolerance (W = ∞). In 
summary, and in contrast to our expectations, we identified 
that long intervals did not always increase the speed; the 
negative effect of decelerations might be greater than the 
positive effect of accelerations in intervals. 
Figure 11 partially supports findings by Thibbotuwawa et 
al.’s steering tasks [48] as participants determine the current 
operational mode (open- or closed-loop) depending on the 
path width at about 5W in front of the current position. 
Because W in Figure 11 is 8 mm, the critical distance of 
anticipation would be 40 mm; if I < 40 mm, participants had 
to continuously anticipate the following obstacles and thus 
could not accelerate in intervals; if I ≧ 40 mm, they could 
accelerate in intervals. While Figure 11b (I is 42 mm = 
5.25W) does not clearly show peaks in intervals, we believe 
that the “5W” criterion is approximate. Moreover, 
Thibbotuwawa et al. [48] validated their “5W” criterion with 
optical mice; direct input pen tablet could have a different 
critical distance of anticipation.  

Effect of Obstacle Size (S) 
We expected that participants would perform a steering 
motion for long S conditions and a crossing motion for short 
S conditions. This assumption can be analyzed for conditions 
with long I, because participants tended to perform a steering 
motion when I was short (Figure 11).  

 
Figure 12. Speed profile in I = 152 mm and W = 8 mm. 

Figure 12 shows the effects of S for I = 152 mm and W = 8 
mm. Along with Figure 11d, all S conditions show clear 
acceleration and deceleration in the long intervals. Looking at 
the speed between a pair of obstacles, we can see a typical 
steering motion with gradual acceleration for the longest S 
(125 mm, Figure 12d). Yet, Figure 12b and c also show 
accelerations between pairs of obstacles. Because participants 
accelerated between a pair of obstacles and then kept 
accelerating inside the intervals (shown in Figure 12d), we 
cannot identify whether participants performed a steering or 
crossing motion for a midrange S value (25 and 65 mm, 
Figure 12b and c). Because the speed linearly decreased as S 
increased (Figure 8c), we assume that S has the effect of 



forcing participants to perform more visually-controlled 
movements (steering rather than crossing). Yet, speed 
profiles from our experiment do not provide clear evidence 
of such behavior differences. 

Model Fitting 
Identifying which model is most suitable for predicting user 
performance in a single movement cycle is useful. Figure 13a 
and b show the fits of the crossing (Equation 2) and steering 
law (Equation 6) for our data. Overall, the steering law shows 
a better fit than crossing. As both models include two degrees 
of freedom (a and b in equations), the difference cannot be 
due to model complexity. 

 
Figure 13. Model fitting for all the 48 data points. 

To analyze the model fitness in more detail, we evaluate the 
effects of each of the task parameters. First, we analyzed 
when the ballistic model (Equation 3) is more appropriate. 
Figure 14 shows the fitness of the crossing, steering, and 
ballistic models in each row across different width (W) 
values in the columns. The steering law is the best for all W 
values. Surprisingly, the ballistic model is not superior, even 
for the largest W (32 mm), although the speed profile showed 
that participants performed open-loop operations for W = 32 
mm, as shown in Figure 10b. In this condition, the speed was 
not mainly constrained by the path width. 

 
Figure 14. Model fitting for each W condition. 

This result shows that using a model for ballistic operations 
for W = 32 mm is not appropriate, which supports related 
work on steering and Fitts’ law. For example, using 

appropriate models for open- and closed-loop motions is 
preferred in terms of model fitness, e.g., using the ballistic 
model for IDS < 5 bits in steering tasks [48], and for ID < 3 
bits in pointing tasks [20]. However, the steering and Fitts’ 
models also show reasonably high fitness without a ballistic 
model, even when the task difficulty is low. Examples can be 
found in e.g., [2, 3] for steering and [32, 58] for pointing. Per 
our experimental results, it is not necessary to separate the 
models based on whether participants performed open- or 
closed loop motions.  

 
Figure 15. Effect of I on model fitting. 

Second, we look at the effect of the interval (I) on model 
fitness, because participants tended to perform crossing 
motions when intervals were longer (Figure 11). However, in 
contrast to our expectations, the crossing law shows a poorer 
fit than the steering law even for the longest I values, as 
shown in Figure 15d. The reason might be that these data 
include instances where participants performed steering 
motions when S was large (Figure 12). 

 
Figure 16. Effect of S on model fitting. 

Third, our expectation that a longer S forced participants to 
perform steering motions rather than crossing ones is also 
rejected. As shown in Figure 16, overall the steering law 
shows a better fit than crossing. However, the steering law 
fitness tends to decrease as obstacle size (S) increases, which 
still does not support our assumption. 

In summary, we found that (1) the ballistic mode model 
shows poor fits and thus is not appropriate for prediction, (2) 
the steering law can usually model user performance better 
than the crossing law, and (3) the effects of I and S do not 
meet our expectations, which are based on previous work. In 
the general discussion section below, we derive and discuss a 
more appropriate model. 



GENERAL DISCUSSION 
Average Speed and Speed Profile 
As expected, the average speed (V) increased as the path 
width (W) increased (Figure 8b), which is consistent with 
previous crossing and steering studies. In addition, as shown 
in Figure 8c, V decreased as the obstacle size (S) increased. 
This result supports previous work, which shows that more 
visually-controlled movements are required for longer paths 
in steering tasks [48]. We also evaluated whether V increased 
with the interval (I), because users were assumed to 
accelerate more in longer intervals. However, as shown in 
Figure 8a, we could not observe a clear tendency; the slope 
of the regression was nearly zero and R2 was 0.22. Although 
I showed a significant main effect, we discuss potential 
reasons behind the lack of the interval’s effect on V by 
analyzing the interactions below. 
When I is small, we expected that the task is a steering task 
regardless of the S value (Figure 1c), as the motion requires 
continuous visual feedback. Thus, we assumed that S should 
have no significant effect on V when I is too small. Yet, 
interestingly, this hypothesis was rejected; the left-most 
cluster of four bars in Figure 9d shows that, while I was only 
2 mm, all S pairs are significantly different. The other three 
clusters in Figure 9d also show, with exceptions, a similar 
tendency, i.e., that V decreases as S increases. 
Figure 9c shows the same data as Figure 9d, but with the 
obstacle size S on the x-axis. We expected that V increases as 
I increases, but the fastest V values were observed for I = 2 
mm when S was 5, 25, and 65 mm. Only when S was 125 
mm, we finally observed the fastest V for the largest I value. 
We expected that the effect of S decreases as W increases, 
because users would perform only ballistic movements. In 
other words, when W = 32 mm in Figure 9b, we expected 
that there would not be a significant difference. Yet, this 
hypothesis must be rejected. In addition, we had a similar 
assumption that I would have no effect when W = 32 mm, but 
this was also rejected (Figure 9a). 
Some of our hypotheses were not supported. We believe that 
a potential reason is the path length. The local steering law 
posits that the instantaneous speed is proportional to the 
current path width (Equation 8). However, in steering tasks 
users gradually accelerate in a path [55], thus a path of longer 
amplitude should show a higher average speed, while a 
shorter path might not show the potential maximum speed 
[48]. As the obstacle density was different depending on the 
combination of I and S, the margins between the start line 
and the first obstacle were also different. In our experiment, 
when the start and end margins were long, AN became short, 
and thus the effect of a larger I value, which increased the V 
value, could be cancelled. As the obstacles could not “fill up” 
the total movement distance in some cases, depending on I 
and S values, AN tended to be short.  
Another explanation would be that participants anticipated 
subsequent movements [53, 54, 55]; in other words, they 
performed motor planning between 150 and 200 ms before 

they reached the target [36]. When I is small, the task is a 
steering task, thus users could only gradually accelerate 
during the entire movement. On the other hand, when there 
are path joints, users significantly decelerate in advance of 
them [55]. We assume that in our experiment such 
decelerations were repeatedly performed for steering through 
sequential obstacles. 

Model Refinement 
In the model fitting analyses, we applied the steering and 
crossing laws for a single movement cycle, which predicts 
the entire movement for the distance of AN. We ideally would 
like to model the total movement time in a stroking motion, 
but steering and crossing models were created for specific 
motions. Hence, a singly cycle of movement, which involves 
both a constrained path (S area) and an unconstrained interval 
(I area), is challenging to model. 

A more sensible way to model user performance would be 
that we regard each movement cycle as a steering motion 
followed by a crossing motion: 

𝑀𝑀𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 �
𝑆𝑆
𝑊𝑊
� + 𝑐𝑐 log2 �

𝐼𝐼
𝑊𝑊

+ 1� (11) 

where a, b, and c are empirically determined constants. A 
benefit of this “combined steering and crossing” model 
(hereafter IDSC model) is the balance between the degrees of 
difficulty for two kinds of motions. 

Table 3 summarizes the model fitness for all 48 conditions’ 
data points. Because the IDSC model includes three 
regressions coefficients, while the crossing and steering laws 
include only two, we also show Akaike information criterion 
(AIC) values [5, 10] in addition to R2. AIC balances the 
complexity of the model, i.e., the number of free parameters, 
and the fitness, and determines the comparatively best model. 
A model with (a) lower AIC value is a better one, (b) AIC ≤ 
(minimum-AIC + 2) considers comparisons with better 
models, and (c) AIC ≥ (minimum-AIC + 10) is safely rejected. 
This analysis method has been used to evaluate performance 
models [11, 42, 55, 60]. Based on the obtained AIC values, 
we can state that the IDSC model can more accurately capture 
user performance than the crossing and steering laws. 

Model a b c R2 AIC 

IDC -548 
[-755, -341] 

380 
[315, 446]  0.748 676 

IDS -6.87 
[-80.1, 66.4] 

61.9 
[55.9, 67.9]  0.903 631 

IDSC -167 
[-248, -85.9] 

85.0 
[75.3, 94.6] 

190 
[158, 221] 0.926 620 

Table 3. Model fitness and AIC values for the considered models 
with estimated coefficients, including 95% CIs [lower, upper]. a, 
b, and c are regression coefficients in each model. 

For the overall performance, we highlight that participants 
did not perform only a single steering or a series of crossing 
motions. Based on the speed profiles there seems to be no 
clear thresholds for path parameters that would force 
participants to perform a specific kind of motion (Figure 11 



and 12), because users were in the ambiguous transition 
region between steering and crossing. In addition, because all 
three parameter types (I, W, and S) significantly interacted 
with each other, the IDSC model cannot improve the 
prediction accuracy that much. Still, per the difference of 
AIC’s between the best and second-best model (IDS): 11 (= 
631 – 620), the improvement is statistically significant. 

Implications 
We identified that participants performed motions as 
predicted by the literature only in limited cases: crossing 
motions for large I (Figure 11d), and steering motions when I 
was small (Figure 11a and b) or when S was large (Figure 
12d). We also found that the ballistic model could not 
accurately model user performance, although W = 32 mm 
seemed to require open-loop motions (Figure 10). Our results 
empirically support Drewes’ hypothesis ([15], Figure 5); 
applying the narrower W to the entire motion is suitable, 
rather than using the global steering law. As shown in these 
instances, we confirmed that there are many conditions that 
existing models cannot model well. Thus, it is necessary to 
validate whether we could apply an existing model to a given 
task, e.g., if the speed of a lasso stroke is always limited by 
the narrowest tolerance width? If so, we should use the 
steering law with the narrowest width rather than a global 
steering law. From this standpoint, we obtained a better 
understanding as to which performance model is appropriate 
for a given task.  
Based on our results, researchers and UI designers who want 
to develop or evaluate selection techniques, such as [9, 34], 
can use our work to design evaluation tasks. For example, we 
recommend 8–16 mm icon margins (I and W in our study) to 
compare user performance of selection techniques; with 32 
mm margins, user speed would be determined by the upper 
limit of motor skills rather than task difficulty. Other 
implications include (1) adjusting task difficulty in video 
games, e.g., for steering a character through obstacles with 
varying distances and sizes, (2) choosing appropriate 
thresholds for lassoing operations, e.g., for the inclusion and 
exclusion of objects, in drawing/painting and other 
applications that involve lassoing and (3) accurately 
measuring steering skills when driving a real/virtual car 
through obstacles [39, 40, 59]. 
An application of our work that could improve GUI 
operations is to visually fill empty space among objects as 
shown in Figure 17. Because a medium range of I values 
sometimes decreases the movement speed (Figure 11), we 
speculate that visually “removing” the intervals through 
showing visual hulls can improve user performance, as users 
do not need to decelerate to pass through the next pair of 
objects. Still, we recommend that such hulls serve only as 
visual guides. Then, users can still accomplish a lasso 
operation even if their stroke touches the red circumferences, 
as shown in the bottom-left of Figure 17b. As such effects 
visually straighten the path, users might also change their 
behavior to avoid touching the red boundary. Clustering 
objects automatically is challenging, and here we simply 

chose three proximal groups depicted through rectangles for 
bounding hulls. Evaluating the efficacy of this idea is subject 
to future work. 

 
Figure 17. This proposed illustration software automatically 
shows visual guidelines to fill up empty spaces during lassoing 
operations, which we predict to lead to better performance. 

Limitations and Future Work 
We designed our experiment to observe the effects of I, W, 
and S independent of any specific model for wide ranges of 
task parameters. Still, we only tested regularly arranged 
obstacles, corresponding to a grid-like layout of icons/boxes. 
Yet, objects in GUI applications are sometimes irregularly 
arranged. Also, objects in illustration or presentations 
software often have non-uniform shapes, such as clouds or 
polygons. We may also test other devices (e.g., mice or 
touchscreens) operated by people with a wider range of 
motor abilities. Verifying the applicability of our current 
findings for such conditions requires further study. 
To achieve our long-term goal, i.e., to derive a model for a 
complete lassoing movement in this work, we need to 
explore additional challenges. First, our cyclic movement 
criterion does not include the motion for “entering” the first 
obstacle. Also, lassoing icons involves making a curved 
stroke [25, 37], see Figure 1a, which cannot be modeled by 
our work. Furthermore, overall speed gradually increased 
throughout a trial as shown in Figure 11 and 12, but lassoing 
requires deceleration at corners. This makes modeling an 
entire lassoing movement more challenging. 

CONCLUSION 
In this study, we investigated straight stroke movements 
constrained by obstacles, which simulates a part of lassoing 
operations through icons. Participants’ behaviors were 
significantly affected by the task parameters of interval (I), 
tolerance width (W), and obstacle size (S). Yet, the 
observations did not match all expectations. Although 
participants could accelerate more in longer intervals, the 
results for longer intervals did not always show an increase in 
the stroke speed. Such unexpected behaviors have not been 
reported before, but are important for a better understanding 
of GUI operations, because the dependent variables (MT and 
V) could not be accurately modeled by existing work. Our 
proposed IDSC model is simple, yet more accurate than 
previous work and forms a strong foundation for future 
models. 
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