幅の異なる経路が連結されたコーナリングタスクのモデル化

薄羽 大樹^{1,a)} 山中 祥太^{2,b)} 宮下 芳明^{1,c)}

概要:Graphical User Interface 上では、階層メニュー内のナビゲーション、投げなわ選択、レーシング ゲームといった操作で角を曲がる操作(コーナリング)が要求される.本論文では、コーナリングの操作 時間推定モデルの改善のために、同じ・異なる幅の経路が連結されたコーナリングタスクの実験を行う. 実験の結果、幅が同じ場合には、ステアリングの法則で十分に操作時間が予測できることがわかった.ま た、幅が異なる場合には、2つのステアリングタスクがスムーズに繋がったとみなすモデルによって高精 度に操作時間を予測できた.先行研究では、フィッツの項を加えることがコーナリングタスクのモデル適 合度を向上させるとされていたが、その項がなくとも十分に予測可能であることを明らかにした.

1. はじめに

Graphical User Interface (GUI) 上におけるステアリン グとは、ある幅内を逸脱せずにカーソルを動かしつづける 操作のことである (図 1a). ステアリングの代表的な例と しては、階層メニュー内のナビゲーション (親メニューか ら子メニューへたどる操作) があげられる. ステアリング の操作時間はステアリングの法則 [1] で予測でき、例えば、 長さ A, 幅 W の経路を通過する時間 MT は、2 つの回帰 定数 ($a \ge b_s$) を用いて、次のように表せる.

$$MT = a + b_s \frac{A}{W} \tag{1}$$

このとき, *A*/*W* の項は,ステアリングの「Index of Difficulty (*ID*)」と呼ばれ, *ID* が増加することは,予測され る *MT* が増加されること,つまり,その操作が難しく,時 間がかかることを示している.

ステアリングの法則は投げなわ選択 [2] やペンジェス チャ [3] といった,より複雑な GUI 上の操作をモデル化す る際にも用いられる.また,Virtual Reality (VR)空間で の自動車の運転 [4] や歩行 [5],レーシングゲーム [6] にも 適用できることが知られている.より一般的でロバストな モデルを構築・導出することは,より正確な操作時間の予 測やタスク難易度の計算を可能にし,HCI 分野にも寄与し ていくと考えられる.

階層メニュー内のナビゲーションや投げなわ選択では, しばしば,角を曲がる操作(コーナリング)が要求される

- ^{b)} syamanak@yahoo-corp.jp
- ^{c)} homei@homei.com

図 1 ステアリングタスクの例. (a)線形経路.(b)同 *ID* の経路 を 90°に連結した経路.

(図 1b). 例えば, macOS のメニューバーにおいて, 親メ ニューから子メニューに移動したい場合には、親メニュー のアイテム内で曲がり、子メニューに到着する必要がある. また、投げなわ選択では、オブジェクト間を曲がり、選択 したいオブジェクトのみを囲うように選択範囲を描くこ とで、それらを同時に選択できる. Pastel は、そのような コーナリングタスクでは,経路幅が十分に広くなければ, 角で減速する動きが見られることを明らかにしている [7]. また、そのような動きはターゲット周辺で速度を落とすポ インティング操作と類似していることから、フィッツの法 則(ポインティングのモデル) [8,9]の項をステアリング の法則に加えることで、コーナリングの操作時間をより正 確に予測できると報告されている.一方で,我々が Pastel と同様の実験を行ったとき,確かに参加者は角で減速をす るが、フィッツの項が有意にモデル適合度を向上させない ことを発見した.このことは、図 1b のような幅の等しい 経路が連結されたコーナリングタスクの操作時間は、ステ アリングの法則のみで十分に予測可能であることを示して いる.また,オーバーフィッティングの可能性を防げるこ とから、パフォーマンスモデリングにおいては、より定数 が少なく精度の高いモデルを構築することが重要である.

¹ 明治大学

² ヤフー株式会社

^{a)} m@mimorisuzu.co

そのため,フィッツの項を含めないよりシンプルなモデル を導出したことは,GUIやVRの設計に寄与する知見とな るだろう.本論文では,幅の異なる経路が連結されている 場合(図 2b)についても検証し,コーナリングタスクのモ デルの改善を行った.

2. 関連研究

2.1 ステアリングの法則

Accot と Zhai はステアリングの法則のグローバルモデ ルを次のように定義している [1].

$$MT = a + b_s \int_C \frac{dx}{W(x)} \tag{2}$$

ここで, C は難易度を算出したい任意の経路, x はカーソル の位置, W(x) は x での経路幅である.また,積分項は ID と呼ばれる.ステアリングの法則は多くの入力デバイス (例えば,マウス,指,ドライブシミュレータ [4,10,11])や, 様々な経路形状(例えば,円形経路,狭まる・広がる経路, 湾曲した経路,3次元経路 [10,12–14])で成立することが 知られている.加えて,ステアリングの法則は入力デバイ スの操作性能の定量比較にも用いられる [5,10,11,15,16]. また,たとえ同じ ID であっても,物理的な入力領域の 違いによって異なる MT が観測されることが知られてお り,これは「Scale Effect」と呼ばれている [17].同じ ID であっても角度が違う経路 [18,19] やインストラクション の違い [20] によっても,異なる MT が観測されることが 知られている.

ステアリングの法則を他のモデルと組み合わせればより 複雑な操作の時間も予測できる.例えば,階層メニュー内 の操作時間は,フィッツの法則やヒック・ハイマンの法則 をステアリングの法則に加えることで予測できる [21,22]. 特に線形メニュー内の操作時間に関しては,機械学習に よっても予測可能であることが知られている [23].

2.2 停止動作が要求されるステアリング操作

式 2 によれば,図 1b のような幅の同じ経路が連結され たコーナリングタスクの *ID* は次のように計算できる.

$$MT = a + b_s \frac{2A}{W} \tag{3}$$

Pastel によれば、コーナリングタスクでは角周辺で停止動作 (Stop and Go) が要求されるため、フィッツの項 [8,9] (と追加の定数 b_p)を加えることでより正確に MTを予測できる [7]. つまり、式 2 は次のように修正される.

$$MT = a + b_s \frac{2A}{W} + b_p \log_2\left(\frac{A}{W} + 1\right)$$
(4)

元々,フィッツの法則は距離 A だけ離れた幅 W のター ゲットをポインティングする際のモデルである.つまり, 式4は,経路を通過する操作に加えて,角での減速をポ

図 2 (a) Targeted-tracking タスク. (b) 幅が異なる経路を曲が るタスク.

インティング操作にみられる減速とみなし,それも考慮す るということである.コーナリングタスクはポインティン グタスクやステアリングタスクのみに近似することはでき ず,フィッツの項は必要であると Pastel は述べている.

図 2a に示されるタスクは、「Targeted-tracking タスク」 と呼ばれる [24]. Targeted-tracking タスクとは、ユーザが 経路を通過した後、ある幅内で動きを止める必要があるタ スクのことである. Senanayake ら [24] によれば、ユーザ はまずステアリングタスクを行い、ステアリング経路の終 端から 5 W_1 手前からは、残りの動作をポインティングタス クとして行う. その操作時間は式 5 (上段) によって示さ れる [24]. このモデルは、慎重なステアリング操作が経路 の終端の 5 W_1 手前で終了するという事実 [25] にもとづい ている.本論文では、 $a' = a + b_s(-5W_1/W_1)$ とした式 5 (下段) を Targeted-tracking タスクのモデルとして扱う.

$$MT = a + b_s \frac{A - 5W_1}{W_1} + b_p \log_2 \left(\frac{2(5W_1 + W_2/2)}{W_2}\right)$$

= $a' + b_s \frac{A}{W_1} + b_p \log_2 \left(\frac{2(5W_1 + W_2/2)}{W_2}\right)$ (5)

なお, Senanayake ら [24] にもとづき,式 5 においては, $\log_2(2A/W)$ をフィッツの項 [8] として使用している.

コーナリングタスクでは, Targeted-tracking タスク同 様、まずステアリングタスクに集中し、その後に角周辺か ら停止動作に集中し, 角を抜けてからは再びステアリング タスクに集中すると想定される.例えば,経路長が2000 pixels,幅が10 pixelsのように狭く長い経路が連結された コーナリングタスクにおいては、ユーザは経路のはじめの 時点では停止動作に意識を向けず、ステアリング経路の終 端から 5W₁ 手前(すなわち, 50 pixels) あたりから停止動 作を意識し始めるだろう.一方で、Pastel が提案したモデ ルでは,経路長 A を停止動作までの距離として使用して いる (式 4). 短い A を実験条件として使用した場合には, Pastel のモデルが適していると思われるが、前述のような 長い A を使用する場合には, Senanayake らのモデルも考 慮した方が適切であると考えられる(後述する3章にて, Senanayake らのモデルにもとづいたコーナリングモデル の改善を行う).

なお, Pastel [7] の他に, コーナリングのモデルはいく つか存在するが [26,27], これらの研究が対象とする操作 時間は,角に侵入してからその角を脱出するまでの時間で ある.我々や Pastel が対象とする操作時間は,経路を通過 し,角を通り,再び経路を通過するまでの総時間である. そのため,上述の研究で提案されたモデルについては本研 究では扱わない.

3. リサーチクエスチョン

Senanayake らのモデルにもとづけば,式4は次のよう に変形できる.

$$\begin{split} MT &= a + b_s \left(\frac{A - 5W_1 - W_2/2}{W_1} + \frac{A}{W_2} \right) + b_p \log_2 \left(\frac{2(5W_1 + W_2/2)}{W_2} \right) \\ &= \left[a + b_s \frac{-5W_1}{W_1} \right] + b_s \left(\frac{A - W_2/2}{W_1} + \frac{A}{W_2} \right) + b_p \log_2 \left(\frac{2(5W_1 + W_2/2)}{W_2} \right) \quad \textbf{(6)} \\ &= a' + b_s \left(\frac{A - W_2/2}{W_1} + \frac{A}{W_2} \right) + b_p \log_2 \left(\frac{2(5W_1 + W_2/2)}{W_2} \right) \end{split}$$

ここで, a' は角括弧内の数値を定数としてマージした値で ある.このモデルは,図 2b のような幅の異なる経路が連 結された場合であり,特に,2つの経路が同じ幅 W を持つ 場合には, a'' を定数とし,次のように簡略化できる.

$$MT = a' + b_s \left(\frac{A - W/2}{W} + \frac{A}{W}\right) + b_p \log_2\left(\frac{2(5W + W/2)}{W}\right)$$
$$= \left[a' + b_s \left(\frac{-W/2}{W}\right) + b_p \log_2\left(\frac{2(5W + W/2)}{W}\right)\right] + b_s \left(\frac{2A}{W}\right)$$
(7)
$$= a'' + b_s \left(\frac{2A}{W}\right)$$

注目すべきは、フィッツの項が定数になり、グローバル モデルから導き出されるコーナリングのモデル(式3)と 一致することである*1. つまり、Senanayake らのモデル が適用できれば、2つの経路が同じ幅Wを持つ場合には、 フィッツの項がなくとも、ステアリングの法則でコーナリ ングの操作時間を十分に予測可能ということになる. 上述 のモデルは、連結される経路が同じ幅を持つ場合のみであ り、異なる幅の場合には、フィッツの項が必要になる可能 性がある. また、Pastelのモデルは経路幅が同じ場合のみ で検証されているため、そもそも、Pastelのモデルが適用 できるか否かも未知である. そのため、次章では、経路幅 が同じ・異なる条件を含めたコーナリング実験を行い、モ デルの改善を行う.

Senanayake らの Targeted-tracking のモデル(式5)で あっても, $W_1 = W_2$ であれば,フィッツの項は定数にな り,消滅する.しかし,Senanayake らの論文 [24] では上記 の点やコーナリングモデルへの適用は述べられていない. 本論文では,モデル比較によって,Senanayake らのモデル がコーナリングモデルに適用可能であるか(フィッツの項 をなくした場合にも操作時間を予測可能であるか)を明ら かにする.

式 6 において, *A* – 5*W*₁ – *W*₂/2 < 0 の場合(タスクの 始めからステアリングではなく停止動作に注力している場 合)には,式6は次のようになる.

$$MT = a + b_s \frac{A}{W_2} + b_p \log_2\left(\frac{2A}{W_2}\right) \tag{8}$$

式 6 では、対数項の分子は $2(5W_1 + W_2/2)$ であったが、 $A - 5W_1 - W_2/2 < 0$ の場合には、5W + W/2が A を超え るため、A に置き換えるのが適切であると考えられる.本 稿では、 $A - 5W_1 - W_2/2 < 0$ かどうかの場合分けを行い、 それぞれの条件におけるモデルを検証する.

4. 実験

4.1 機材

PC は Apple MacBook Pro (Intel Core i5, 2.4 GHz, 2 コア, Intel Iris 1536 MB, 8 GB RAM, macOS Sierra, 図 3a) であり, 解像度は 1680 × 1050 pixels (実寸は 13.3 inches, 286.47 × 179.04 mm, 0.17 mm/pixel) であった. 入力デバイスはマウス (Logitech G-PPD-002WL, 3200 dpi) であり, 1.80 m のケーブルで PC に繋がれており,下 には十分大きなマウスパッド (899 × 420 mm) が敷かれ ていた. 実験システムは JavaScript で開発されており,フ ルスクリーンで表示された.

図 3 (a) 実験機材. (b) 実験タスクの概要.

4.2 参加者

12名(3名は女性,9名は男性,M = 22.08歳,SD = 2.02歳)が参加した.すべての参加者が右利きであり,右手でマウスを操作した.2500円が報酬として支払われた.

4.3 タスク

画面には青色の開始領域,白色の経路,緑色の終了領域 が表示された(図 3b).参加者は開始領域をクリックして 試行を開始させ,経路から逸脱しないようにカーソルを 操作し,終了領域で再びクリックして試行を完了させた. カーソルの軌跡は開始領域では青色,経路内では赤色,終 了領域では青色で表示された [10].開始領域からカーソル が脱出すると音が鳴らされるとともに計測が開始された. カーソルが経路から逸脱することなく終了領域に到達した 上でクリックがなされると,成功を示す音が再生された. そうでない場合(途中でカーソルが逸脱した場合),失敗 (エラー)を示す音が再生され,参加者はその試行をやり直 した.参加者には,クラッチ(マウスを置き直す動作)を

^{*1} フィッツの法則は,様々なバージョンが存在するが [28,29],例 えば, Shannon の式 [9] を用いた場合であっても,同様の式が得 られる.

しないように指示し,もし,クラッチをした場合には,マ ウスの右ボタンを押して試行をやり直させた.クラッチに よるやり直しはエラーとしてカウントしなかった.

4.4 実験デザイン

1つの経路の長さAは 250, 380, 560, 700 pixels (そ れぞれ, 42.63, 64.80, 95.49, 119.36 mm) であった. 全 体の経路の長さは 2A であった. 角の前後の経路幅 W_1 と W_2 はそれぞれ 30, 40, 60, 80 pixels (それぞれ, 5.12, 6.82, 10.23, 13.64 mm) であった. そのため, 2つの経路 幅が同じ・異なる条件が存在した. ステアリングの法則に よって計算される 1 つの経路の *ID* は 3.13–23.33 であっ た. Pastel の実験と比べ,本研究も十分に広い範囲の *ID* が設定されていると考えられる.

4.5 手順

A, W_1 , W_2 の順序はランダムであった.1 セットは 4A×4 W_1 ×4 W_2 = 64 試行 であった.参加者はまず1 セットの練習をし,実験データとして5 セットを行った. 全体では,3,840 試行 (4A×4 W_1 ×4 W_2 ×5 セット×12 名) であり,1名の参加者が実験に要した時間は30分であった.

4.6 インストラクション

先行研究 [2,10] と同様,参加者には,経路を逸脱しない 範囲で速度を出すよう指示した(つまり,速度より精度を 優先するよう指示した).予備実験では,参加者に速く正確 にタスクを行うよう指示したが,その場合には高いエラー 率が観測された.また,本実験では,Pastelの実験 [7] と 比べると長く狭い経路を条件として使用するため,精度を 優先したインストラクションを使用することとした.

4.7 計測値

従属変数は,操作時間 *MT*(開始領域を脱出してから, 終了領域に侵入するまでの時間,エラーした試行を除く), エラー率であった.

5. 結果

4,449 試行のうち,609 回のエラーが観測された(13.54%). Pastel の研究 [7] と比べると、やや高いエラー率が観測さ れた. Pastel の研究では、軌跡の 98%が経路に入っていれ ばその試行が成功とされていたため、低いエラー率が観測 されたのだと思われる.また、ステアリングタスクでは、 エラー率が 10-25% [10] になるのが通例とされているため、 本実験のエラー率は標準的な値であると考えられる.

繰り返しのある分散分析で分析を行い,多重比較には Bonferroniの法を用いた.独立変数は A, W₁, W₂ であ り,従属変数は計測値で述べた値であった.以下のグラフ では,エラーバーは標準誤差を示し,***,**,*はそれぞ れ, *p* < 0.001, *p* < 0.01, *p* < 0.05 を示す.

図 4 MT に対する A, W₁, W₂ の影響.

図 5 エラー率に対する A, W₁, W₂の影響.

5.1 操作時間 MT

主効果が見られたのは、A ($F_{3,33} = 153.16$, p < 0.001, $\eta_p^2 = 0.93$), W_1 ($F_{3,33} = 66.40$, p < 0.001, $\eta_p^2 = 0.86$), W_2 ($F_{3,33} = 188.22$, p < 0.001, $\eta_p^2 = 0.94$) であった. 図 4 に示されるように、A が増加するほど、また、 W_1 や W_2 が減少するほど MT が増加した. 交互作用が見られ たのは、A × W_1 ($F_{9,99} = 23.01$, p < 0.001, $\eta_p^2 = 0.68$), $A × W_2$ ($F_{9,99} = 48.23$, p < 0.001, $\eta_p^2 = 0.81$) であった. 全ての交互作用において、経路長と経路幅の関係はステア リングの法則と一致していた(つまり、MT は経路長と経 路幅の比率に影響されていた).

5.2 エラー率

主効果が見られたのは、A ($F_{3,33} = 12.48$, p < 0.001, $\eta_p^2 = 0.53$), W_1 ($F_{3,33} = 9.13$, p < 0.001, $\eta_p^2 = 0.45$), W_2 ($F_{3,33} = 20.10$, p < 0.001, $\eta_p^2 = 0.65$) であった. 図 5 に示されるように、Aが増加するほど、また、 W_1 や W_2 が 減少するほどエラー率が増加した. 交互作用が見られたの は、 $A \times W_2$ ($F_{9,99} = 2.90$, p < 0.01, $\eta_p^2 = 0.21$) であっ た. Aが増加するほど W_2 間の差が増加していた.

6. モデル適合

6.1 幅の等しい経路が連結された場合

まず,経路幅が等しく $(W_1 = W_2)$, $A - 5W_1 - W_2/2 \ge 0$ となる条件を抽出し,モデル適合度を検証した (N = 14, N)は対象となる試行数).本節では, $W = W_1 = W_2$ と する. グローバルモデル (式 2)によれば,コーナリング タスクの操作時間は式 3 で示される.また,たとえ,タ スクを 2 つの連続したステアリングタスクとみなしても,

図 6 (a) 速度を計測するチェックポイント(赤色の線). (b) W₁ = W₂ における平均速度 (緑色の線は角の位置, W は W₁ と W₂ を示す.)

表 1 $W_1 = W_2$ におけるモデルモデル適合度 (N = 14). [下限値, 上限値] として回帰定数 (a, b_s, b_n)の 95%信頼区間を示す.

Model	Equation	a	b_s	b_p	adj. R^2	AIC
Steering law	$MT = a + b_s \left(\frac{2A}{W}\right)$	337 [161, 513]	102 [95.2, 109]		0.987	181
Pastel's model	$MT = b_s \left(\frac{2A}{W}\right) + b_p \log_2\left(\frac{A}{W} + 1\right)$	-109 [-1587, 1370]	91.4 [55.0, 128]	198 [-452, 847]	0.986	183

 $MT = [a + b_s(A/W_1)] + [a + b_s(A/W_2)]$ となり、定数を マージすれば同様の式が得られる.

本節では、ステアリングの法則と Pastel のモデル (式 4) を検証する.ステアリングの法則は、定数を2つしか持た ないが、Pastel のモデルは3つの定数を持つ.そのため、 adj. R² に加え、赤池情報量規準(AIC) [30] を用いモデ ル適合度を検証する.良いモデルは高い adj. R² と低い AIC を示し [2,31]、また、AIC の差が2以上であれば、そ の差は考慮に値し [31,32]、その差が10を超えれば、低い AIC を示すモデルの方が有意に良いとされる [32].

表1に示されるように、2つのモデル間の差は有意では なかった.つまり,幅の等しい経路が連結されたコーナリ ングタスクの操作時間は、定数の少ないステアリングの法 則で十分に予測可能ということである.

参加者がコーナリング時に停止動作を行っていたかも検 証した.図 6a に示されるように、21 個のチェックポイン ト(#0-20,赤色の線)を設置し、チェックポイントから 次のチェックポイントを通過するまでの時間を計測し、そ の時間から速度を算出した.チェックポイントは角の前後 にそれぞれ 10 個、角に 1 個が設置された.図 6b に示され るように、参加者は角(#10)で急激に速度を落としてい たことがわかる.このことは、Pastel が述べていた「コー ナリングタスクでは停止動作が要求される」を支持してい る.一方で、表 1 に示されるように、フィッツの項がなく とも操作時間を高精度に予測できることから、確かに参加 者は停止動作を行うが、予測にはステアリングの法則のみ で十分であることが示された.つまり、Senanayake らの モデルを適用することでフィッツの項が不要になる(式 7) という仮説は正しかった.

 $A - 5W_1 - W_2/2 < 0$ となる条件は2つしか存在しな かったため、本節ではその条件におけるモデル適合度は検 証しない.

6.2 幅の異なる経路が連結された場合

次に、経路幅が異なる条件を含めたすべての条件でのモ デル適合度を検証する.図7に示されるように、参加者は 角で速度を急激に落としていた.また,たとえ $W_1 = W_2$ の場合であっても、角の前後におけるそれぞれのピーク速 度は異なっていた. つまり, 角の前後のそれぞれの経路で は、たとえ同じ経路幅であっても、異なる操作時間が観測 されていた、そのため、それぞれの経路においてステアリ ングの法則を適用した場合,異なる傾き b。が得られると 推測した.図8に示されるように、それぞれの経路でス テアリングの法則は高い適合度を示し,W1の経路の傾き は W₂の経路の傾きの 2 倍であった. これを踏まえ, 検証 するモデルに、それぞれの経路で異なる傾きを使用する 「Steering law (segmented)」(表 2-4) を加えた. 「Steering law (global)」(表 2-4) は、上記のモデルにおいて、ステア リングにかかる定数をマージしたバージョンである.同様 にして、「Pastel's model (global)」(表 2-4」から「Pastel's model (segmented)」(表 2-4)を導出した.

まず, $A - 5W_1 - W_2/2 \ge 0$ となる条件を抽出し, モ デル適合度を検証した (N = 56). 上記の候補モデルに 加えて, $A - 5W_1 - W_2/2 \ge 0$ であるため, ステアリン グの項が含まれる「Senanayake et al.'s model (global)」 (表 2) と, 異なる傾きを使用する「Senanayake et al.'s model (segmented)」(表 2) を検証した.表 2 に示される ように, 異なる傾きを使用する Segmented バージョンがよ り良い適合度を示した.

次に、 $A-5W_1-W_2/2 < 0$ になる条件を抽出し、モデル適合度を検証した (N = 8). $A-5W_1-W_2/2 < 0$ であるため、 Senanayake らのモデルは式 8 をもとにした「Senanayake et al.'s model」(表 3) を使用した. Senanayake et al.'s model では、ステアリングの項は 1 つであるため、Segmented バージョンは存在しない. 表 3 に示されるように、Steering law (global) 以外のモデルはより良い適合度を示した.

表 2 $A - 5W_1 - W_2/2 \ge 0$ になる条件におけるモデル適合度 (N = 56). b_{s1} と b_{s2} は回帰

Model	Equation	a	b_{s1}	b_{s2}	b_p	adj. \mathbb{R}^2	AIC
	$MT = r + h \left(A + A \right)$	221	106			0.051	
Steering law (global)	$MI = a + b_{s1} \left(\frac{W_1}{W_1} + \frac{W_2}{W_2} \right)$	[63.9, 378]	[100, 113]			0.951	767
Steering law (segmented)	MT = r + h + A + h + A	255	74.1	136		0.988 689	
	$MT = a + b_{s1} \frac{W_1}{W_1} + b_{s2} \frac{W_2}{W_2}$	[177, 332]	$[68.2,\ 80.0]$	[131, 142]			089
Pastel's model (global)	$MT = r + b \left(A + A\right) + b lar \left(A + 1\right)$	-786	75.9		490	0.987 695 0.987	COF
	$MI = a + b_{s1} \left(\frac{1}{W_1} + \frac{1}{W_2} \right) + b_p \log_2 \left(\frac{1}{W_2} + 1 \right)$	[-972, -600]	[69.8, 82.0]		[409, 572]		695
Pastel's model (segmented)	$MT = r + b + A + b + A + b \log (A + 1)$	-191	73.3	112	211	0.020	694
	$MI = a + b_{s1} \frac{1}{W_1} + b_{s2} \frac{1}{W_2} + b_p \log_2\left(\frac{1}{W_2} + 1\right)$	[-557, 176]	[67.6, 79.0]	[91.4, 132]	[40.8, 381]	0.989	084
	$MT = r + b \left(A - W_2/2 + A \right) + b \ln r \left(2(5W_1 + W_2/2) \right)$	-426	104		224	0.007	600
Senanayake et al.'s model (global)	$MI = a + b_{s1} \left(\frac{1}{W_1} + \frac{1}{W_2} \right) + b_p \log_2 \left(\frac{1}{W_2} \right)$	[-584, -269]	[101, 107]		[181, 268]	0.987	692
	$MT = r + h + A - W_2/2 + h + A + h + h = r \left(2(5W_1 + W_2/2)\right)$	89.1	84.7	125	66.0	0.000	69 7
Senanayake et al.'s model (segmented)	$WI = a + o_{s1} \frac{1}{W_1} + o_{s2} \frac{1}{W_2} + o_p \log_2\left(\frac{1}{W_2}\right)$	[-321, 499]	[70.2, 99.3]	[109, 140]	[-58.3, 190]	-58.3, 190] 0.989	087

定数

図 8 それぞれの経路における $MT \ge ID$ の関係 (N = 64).

最後に, $A - 5W_1 - W_2/2$ の場合わけをせずに, すべての 条件 (N = 64) におけるモデル適合度を検証した. 候補モ デルは, Steering law, Pastel's model の両バージョンであ る. 表 4 に示されるように, Steering law (segmented) と Pastel's model (segmented) はより良い適合度を示した.

Steering law (segmented) と Pastel's model (segmented) は Senanayake et al.'s model の両バージョンと比べても 同程度以上の適合度を示した.また, Steering law (segmented) と Pastel's model (segmented) は場合わけを必要 としない.そして, Steering law (segmented) は Pastel's model (segmented) と比べて定数の個数が少ないにもかか わらず, 同程度の予測精度であった.以上をまとめると, コーナリングモデルは Steering law (segmented) が最適で あると考えられる.

7. 議論

7.1 幅の等しい経路が連結された場合

実験の結果,幅の等しい経路が連結されたコーナリング タスクにおいては、ステアリングの法則で十分に操作時間 を予測できると示された. Pastel の研究においても、ステ アリングの法則は高い適合度 ($R^2 = 0.99$)を示していた が、Pastel は、コーナリングタスクはステアリングタスク と近似できないため、ステアリングの法則では十分では ない(つまり、予測のためにはフィッツの項を加えるべき である)と述べていた [7]. しかし、今回の実験結果では、 フィッツの項を加えることによるモデル適合度の向上は有 意ではなかった(回帰分析の結果、p = 0.517であった). つまり、幅が等しい経路が連結されたコーナリングタスク の操作時間の予測には、ステアリングの法則を使用すれば 十分ということになる.

7.2 幅の異なる経路が連結された場合

各モデルの Global バージョンと Segmented バージョン を比較すると、Segmented バージョンの適合度は有意に高 かった. つまり, それぞれの経路において異なる傾きを使 用することがモデル適合度を向上させることがわかる.先 行研究 [18,19] によれば,経路が横向き(x軸方向)でなく ともステアリングの法則が成立し、角度に応じて操作時間 が異なることが知られている. つまり, ステアリングの法 則によって算出される傾きも角度に応じて異なる. それゆ え, x 軸方向と v 軸方向の経路ごとに異なる傾きを使用し た Steering law (segmented) が Steering law (global) よ りも高い適合度を示したのだといえる. また, Yamanaka らが行った Experiment 3 では、参加者は x 軸方向に連結 された2つの直線経路を通過するタスクを行った[33].各 経路ごとにステアリングの法則を適用する再分析を行った 結果,それぞれの経路において近い傾きが得られた(図 9). そして, [33] の Table 1 に書かれる ID_{2ss} と ID_{3ss} は,そ れぞれ本論文での Steering law (global) と Steering law

Model	Equation	a	b_{s1}	b_{s2}	b_p	adj. R^2	AIC
Steering law (global)	$MT = a + b_{s1} \left(\frac{A}{W_1} + \frac{A}{W_2} \right)$	115	126			0.956	0.4
		[-117, 347]	[101, 151]				94
Steering law (segmented)	MT = a + b + A + b + A	413	35.0	132		0.005	77
	$M T \equiv a + b_{s1} \frac{1}{W_1} + b_{s2} \frac{1}{W_2}$	[275, 551]	[-0.029, 70.0]	[123, 141]		0.995	11
Pastel's model (global)	$MT = a + b + (A + A) + b \log((A + 1))$	-164	43.4		393	0.004 78	70
	$MI = u + b_{s1} \left(\frac{W_1}{W_1} + \frac{W_2}{W_2} \right) + b_p \log_2 \left(\frac{W_2}{W_2} + 1 \right)$	[-310, -18.5]	[8.16, 78.6]		[232, 554]	0.994	10
Pastel's model (segmented)	$MT = a + b + A + b + A + b \log \left(A + 1\right)$	158 35.0	35.0	91.2	182	0.000	76
	$MI = a + b_{s1} \frac{1}{W_1} + b_{s2} \frac{1}{W_2} + b_p \log_2\left(\frac{1}{W_2} + 1\right)$	[-375, 691]	[0.120, 69.8]	[8.06, 174]	[-186, 551]	0.990	AIC 94 77 78 76 83
Senanayake et al.'s model	$MT = a + b + A + b \log(2A)$	307	98.8		411	0.000	83
	$m_1 = a + o_{s1} \frac{1}{W_2} + o_p \log_2\left(\frac{1}{W_2}\right)$	[-386, 1000]	[-0.121, 198]		[-804, 1625]	0.990	

表 3 $A - 5W_1 - W_2/2 < 0$ になる条件におけるモデル適合度 (N = 8).

表 4 すべての条件におけるモデル適合度 (N = 64).

Model	Equation	a	b_{s1}	b_{s2}	b_p	adj. \mathbb{R}^2	AIC
Steering law (global)	$MT \rightarrow h (A + A)$	252	105			0.000	000
	$MI = a + b_{s1} \left(\frac{W_1}{W_1} + \frac{W_2}{W_2} \right)$	[128, 375]	[99.9, 111]			0.960	869
Steering law (segmented)	MT - A A A	252	74.3	136		0.000	770
	$MI \equiv a + b_{s1} \frac{W_1}{W_1} + b_{s2} \frac{W_2}{W_2}$	[192, 312]	[69.1, 79.4]	[131, 141]		0.990	118
Pastel's model (global)	$MT = a + b - (A + A) + b \log - (A + 1)$	-683	76.4		459	0.000	704
	$MI = u + b_{s1} \left(\frac{W_1}{W_1} + \frac{W_2}{W_2} \right) + b_p \log_2 \left(\frac{W_2}{W_2} + 1 \right)$	[-855, -511]	[70.7, 82.2]		[381, 536]	0.988	794
Pastel's model (segmented)	$MT = a + b_{s1}\frac{A}{W_1} + b_{s2}\frac{A}{W_2} + b_p \log_2\left(\frac{A}{W_2} + 1\right)$	-65.3	73.3	118	156	0.991	
		[-355, 225]	[68.3, 78.4]	[100, 135]	[16.2, 295]		(15

(segmented) に該当するが,これらのモデルの適合度は同 程度であった.つまり,コーナリングなどの水平に経路が 連結されないタスクの場合には,ステアリングの項を経路 ごとにわけることが適合度を向上させるといえる.

図 9 [33] のそれぞれの経路における $MT \ge ID$ の関係 (N = 45).

図7に示されるように、幅が異なる場合においても、角 で急激に減速しており、「コーナリングタスクでは停止動 作を行う」という Pastel の主張は正しかったように思え る.また、Senanaya らのモデルを適用したコーナリングモ デルの適合度も高かったことから、角に近くにつれてユー ザが停止動作に注力するという仮説も正しかったのであろ う.一方で、前段のとおり、AIC や定数の数を考慮すれば、 コーナリングタスクのモデルとして適切なのは Steering law (segmented) であると考えられる.つまり、コーナリ ングタスクはスムーズに連結された2つのステアリングタ スクとみなせる.また、Steering law (segmented) は、幅 が同じ経路が連結されている場合には、定数をマージする ことでステアリングの法則と一致するため、幅が同じ・違 うどちらの条件においても Steering law (segmented) が使 用可能であるといえる.

8. 制約と展望

Pastel の研究では,経路が連結される角度は 90° だけで なく,45° や 135° といった角度も実験条件に含まれてい た.本研究では,90° に連結される場合しかテストしてい ないため,他の角度においても Steering law (segmented) がモデルとして適しているかは不明である.一方で,本 研究の実験結果や Yamanaka ら [33] の実験結果を考慮す れば,90° に加え 0° においても Steering law (segmented) を検証したといえる.その点を踏まえると,0から 90° の 角度においては,傾きの値を変化させることで,Steering law (segmented) が十分に操作時間を予測できると考えて いる.また,Thibbotuwawa ら [19] にもとづけば,ステア リングの項にサイン (sin θ)を加えることで,角度を考慮 できるモデルになると考えている.

また,モデル比較の結果,「ステアリング経路の終端か ら 5 W_1 手前からユーザの動きが変化する」はコーナリン グタスクにおいても見られた.一方で, nW_1 のn = 5と なるのは直線経路をステアリングする際に見られる現象で あり,コーナリングタスクの場合にはn = 5よりも適した 値が存在する可能性がある.また,本実験では,参加者に 速さよりも正確さを重視するように指示しており,また, 図 7を見ても, W_1 や W_2 が大きい条件であっても速度変 化は ballistic よりも visually-controlled に近かった.コー ナリングタスクにおける最適なnが調査されれば,モデル はさらに改善されると考えられる.

投げなわ選択タスクでは、コーナリング操作が含まれる ため、Pastelの研究にもとづき、そのモデルにはフィッツ の項が含まれている [2]. 一方で、本実験の結果にもとづ けば、フィッツの項がなくともコーナリングタスクの操作 時間は十分に予測できるため、投げなわ選択のモデルにつ いても改善できる可能性がある. Yamanaka ら [2] がモデ ル化した投げなわ選択は、グリッド状にアイコンが整列さ れている場合であり、水平経路と垂直経路しか存在しない ため、ステアリングの項が多くとも2つの傾きを有すれ ば,操作時間は予測可能であろう [18,19].一方で,もし, アイコンがランダムな位置に存在する場合には、経路の角 度の種類が増えるため、その分だけ傾き(定数)が必要に なる可能性がある.あまりにも定数が多いと,適合度は上 がるが、オーバーフィッティングを引き起こす可能性があ る.しかし、コーナリングタスクにおいては、Steering law (global) も高い適合度を示していたため、オーバーフィッ ティングの場合には、ステアリングのグローバルモデルを 使用することで、投げなわ選択の操作時間を予測できるだ ろう.このように、本研究の実験結果は、コーナリングタ スクだけでなく、そのタスクを含む他のタスクのモデル化 についても寄与していくと考えられる.

9. 結論

本実験では、コーナリングモデルの改善のために、幅の 異なる経路が連結されたコーナリングタスクを行った.実 験の結果によれば、幅が同じ・異なる経路において、ステ アリングの法則は十分な適合度を示した.特に、幅の異な る場合においては、コーナリングタスクを2つのステアリ ングタスクがスムーズに連結されたタスクとみなすこと で、フィッツの項がなくとも、操作時間を高精度に予測可 能であると示した.今後は、実験結果にもとづき、コーナ リングが含まれる投げなわ選択タスクなどのモデルの改善 を行っていく予定である.

参考文献

- Accot, J. and Zhai, S.: Beyond Fitts' Law: Models for Trajectory-based HCI Tasks, Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI '97, New York, NY, USA, ACM, pp. 295– 302, DOI: 10.1145/258549.258760 (1997).
- [2] Yamanaka, S. and Stuerzlinger, W.: Modeling Fully and Partially Constrained Lasso Movements in a Grid of Icons, *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, CHI '19, New York, NY, USA, ACM, pp. 120:1–120:12, DOI: 10.1145/3290605.3300350 (2019).
- [3] Cao, X. and Zhai, S.: Modeling Human Performance of Pen Stroke Gestures, *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '07, New York, NY, USA, ACM, pp. 1495–1504, DOI: 10.1145/1240624.1240850 (2007).
- [4] Zhai, S., Accot, J. and Woltjer, R.: Human Action Laws in Electronic Virtual Worlds: An Empirical Study of Path Steering Performance in VR, *Presence: Teleop*erators and Virtual Environments, Vol. 13, No. 2, pp. 113–127, DOI: 10.1162/1054746041382393 (2004).
- [5] Monteiro, P., Carvalho, D., Melo, M., Branco, F. and Bessa, M.: Application of the steering law to

virtual reality walking navigation interfaces, Computers & Graphics, Vol. 77, pp. 80 – 87, DOI: https://doi.org/10.1016/j.cag.2018.10.003 (2018).

- [6] Bateman, S., Doucette, A., Xiao, R., Gutwin, C., Mandryk, R. L. and Cockburn, A.: Effects of View, Input Device, and Track Width on Video Game Driving, *Proceedings of Graphics Interface 2011*, GI '11, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, Canadian Human-Computer Communications Society, pp. 207–214, available from (http://dl.acm.org/citation.cfm?id=1992917.1992952) (2011).
- [7] Pastel, R.: Measuring the Difficulty of Steering Through Corners, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '06, New York, NY, USA, ACM, pp. 1087–1096, DOI: 10.1145/1124772.1124934 (2006).
- [8] Fitts, P. M.: The information capacity of the human motor system in controlling the amplitude of movement, *Journal of experimental psychology*, Vol. 47, No. 6, p. 381 (1954).
- [9] MacKenzie, I. S.: A Note on the Information-Theoretic Basis for Fitts' Law, *Journal of Mo*tor Behavior, Vol. 21, No. 3, pp. 323–330, DOI: 10.1080/00222895.1989.10735486 (1989).
- [10] Accot, J. and Zhai, S.: Performance Evaluation of Input Devices in Trajectory-based Tasks: An Application of the Steering Law, *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '99, New York, NY, USA, ACM, pp. 466–472, DOI: 10.1145/302979.303133 (1999).
- [11] Senanayake, R. and Goonetilleke, R. S.: Pointing Device Performance in Steering Tasks, *Perceptual and Motor Skills*, Vol. 122, No. 3, pp. 886–910, DOI: 10.1177/0031512516649717 (2016).
- [12] Yamanaka, S. and Miyashita, H.: Modeling the Steering Time Difference Between Narrowing and Widening Tunnels, *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*, CHI '16, New York, NY, USA, ACM, pp. 1846–1856, DOI: 10.1145/2858036.2858037 (2016).
- [13] Nancel, M. and Lank, E.: Modeling User Performance on Curved Constrained Paths, *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, CHI '17, New York, NY, USA, ACM, pp. 244–254, DOI: 10.1145/3025453.3025951 (2017).
- [14] Kattinakere, R. S., Grossman, T. and Subramanian, S.: Modeling Steering Within Above-the-surface Interaction Layers, *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '07, New York, NY, USA, ACM, pp. 317–326, DOI: 10.1145/1240624.1240678 (2007).
- [15] Wang, Q., Ren, X., Sarcar, S. and Sun, X.: EV-Pen: Leveraging Electrovibration Haptic Feedback in Pen Interaction, *Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces*, ISS '16, New York, NY, USA, ACM, pp. 57–66, DOI: 10.1145/2992154.2992161 (2016).
- [16] Wang, Q., Ren, X. and Sun, X.: Enhancing Pen-based Interaction Using Electrovibration and Vibration Haptic Feedback, *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, CHI '17, New York, NY, USA, ACM, pp. 3746–3750, DOI: 10.1145/3025453.3025555 (2017).
- [17] Accot, J. and Zhai, S.: Scale Effects in Steering Law Tasks, Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, CHI '01, New York, NY, USA, ACM, pp. 1–8, DOI: 10.1145/365024.365027 (2001).

- [18] Zhou, X., Ren, X. and Hui, Y.: Effect of Start Position on Human Performance in Steering Tasks, 2008 International Conference on Computer Science and Software Engineering, Vol. 2, pp. 1098–1101, DOI: 10.1109/CSSE.2008.1310 (2008).
- [19] Thibbotuwawa, N., Goonetilleke, R. S. and Hoffmann, E. R.: Constrained Path Tracking at Varying Angles in a Mouse Tracking Task, *Human Factors*, Vol. 54, No. 1, pp. 138–150, DOI: 10.1177/0018720811424743 (2012).
- [20] Zhou, X. and Ren, X.: An investigation of subjective operational biases in steering tasks evaluation, *Behaviour & Information Technology*, Vol. 29, No. 2, pp. 125–135, DOI: 10.1080/01449290701773701 (2010).
- [21] Ahlström, D.: Modeling and Improving Selection in Cascading Pull-down Menus Using Fitts' Law, the Steering Law and Force Fields, *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '05, New York, NY, USA, ACM, pp. 61–70, DOI: 10.1145/1054972.1054982 (2005).
- [22] Cockburn, A., Gutwin, C. and Greenberg, S.: A Predictive Model of Menu Performance, *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '07, New York, NY, USA, ACM, pp. 627– 636, DOI: 10.1145/1240624.1240723 (2007).
- [23] Li, Y., Bengio, S. and Bailly, G.: Predicting Human Performance in Vertical Menu Selection Using Deep Learning, *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*, CHI '18, New York, NY, USA, ACM, pp. 29:1–29:7, DOI: 10.1145/3173574.3173603 (2018).
- [24] Senanayake, R., Hoffmann, E. R. and Goonetilleke, R. S.: A model for combined targeting and tracking tasks in computer applications, *Experimental Brain Research*, Vol. 231, No. 3, pp. 367–379, DOI: 10.1007/s00221-013-3700-4 (2013).
- [25] Thibbotuwawa, N., Hoffmann, E. R. and Goonetilleke, R. S.: Open-loop and feedback-controlled mouse cursor movements in linear paths, *Ergonomics*, Vol. 55, No. 4, pp. 476–488, DOI: 10.1080/00140139.2011.644587 (2012).
- [26] Pastel, R., Champlin, J., Harper, M., Paul, N., Helton, W., Schedlbauer, M. and Heines, J.: The Difficulty of Remotely Negotiating Corners, *Proceedings* of the Human Factors and Ergonomics Society Annual Meeting, Vol. 51, No. 5, pp. 489–493, DOI: 10.1177/154193120705100513 (2007).
- [27] Helton, W. S., Head, J. and Blaschke, B. A.: Cornering Law: The Difficulty of Negotiating Corners With an Unmanned Ground Vehicle, *Human Factors*, Vol. 56, No. 2, pp. 392–402, DOI: 10.1177/0018720813490952 (2014).
- [28] Drewes, H.: Only One Fitts' Law Formula Please!, CHI '10 Extended Abstracts on Human Factors in Computing Systems, CHI EA '10, New York, NY, USA, ACM, pp. 2813–2822, DOI: 10.1145/1753846.1753867 (2010).
- [29] Hoffmann, E. R.: Which Version/Variation of Fitts' Law? A Critique of Information-Theory Models, *Journal of Motor Behavior*, Vol. 45, No. 3, pp. 205–215, DOI: 10.1080/00222895.2013.778815 (2013).
- [30] Akaike, H.: A new look at the statistical model identification, *IEEE Transactions on Automatic Control*, Vol. 19, No. 6, pp. 716–723, DOI: 10.1109/TAC.1974.1100705 (1974).

- [31] Ren, X., Kong, J. and Jiang, X.-Q.: SH-Model: A Model Based on Both System and Human Effects for Pointing Task Evaluation, *IPSJ Digital Courier*, Vol. 1, pp. 193– 203, DOI: 10.2197/ipsjdc.1.193 (2005).
- [32] Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference: a practical informationtheoretic approach, Springer Science & Business Media (2003).
- [33] Yamanaka, S., Stuerzlinger, W. and Miyashita, H.: Steering Through Sequential Linear Path Segments, Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI '17, New York, NY, USA, ACM, pp. 232–243, DOI: 10.1145/3025453.3025836 (2017).